Skip to main content

Part of the book series: Microdevices ((MDPF))

  • 291 Accesses

Abstract

Hot electrons and holes in semiconductors are those having higher kinetic energy than some equilibrium value

$$ E_0 \, \approx \,3/2 $$

kT. For the sake of brevity we will confine our examination to the case of hot electrons, although the same phenomena occur in the hole gas in semiconductors. Electrons can be heated by various means; for example, by an electric field, by optical excitation, and by injection through a heterojunction. However, depending upon how the heating is accomplished, the electrons distribution function with respect to velocity or energy may have a qualitatively different form. In principle, the kinetic energy of an electron can be increased two ways: by increasing its drift velocity, e.g., by accelerating it in an electric field or by increasing its random velocity or temperature; e.g., simply heating the semiconductor. In the first case the electron distribution function looks like a shifted Maxwellian distribution or even a δ-function. In the second case the distribution function is nearly Maxwellian but, as a rule, the electron gas has a higher equilibrium temperature [1, 2]. In actual situations both methods for heating electrons will be realized, but one will be dominant. The physics of a semiconductor transistor’s operation will change, depending on which mechanism dominates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Požhela, Plasma and Current Instabilities in Semiconductors, Pergamon Press, Oxford (1981).

    Google Scholar 

  2. V. Denis and J. Požela, Hot Electrons [in Russian], Mokslas, Vilnius (1971).

    Google Scholar 

  3. S. Krishnamurthy, A. Sher, and A.-B. Chen, “Materials choice for ballistic transport: Group velocities and mean free paths calculated from realistic band structures,” Appl. Phys. Lett., 52, No. 6, 468–470 (1988).

    Article  ADS  Google Scholar 

  4. D. C. Herbert, “Structured-base hot-electron transistors: I. Scattering rates,” Semicond. Sci. Technol., 3, No. 2, 101–110 (1988).

    Article  ADS  Google Scholar 

  5. A. F. J. Levi and T. H. Chiu, “Room temperature operation of unipolar hot electron transistors,” Solid State Electron., 31, No. 3/4, 625–628 (1988).

    Article  ADS  Google Scholar 

  6. M. Kuzuhara, K. Kim, D. Arnold, and K. Hess, “Ballistic electron transport across collector barriers in AlGaAs/GaAs hot-electron transistors,” Appl. Phys. Lett., 52, No. 15, 1252–1254 (1988).

    Article  ADS  Google Scholar 

  7. A. Al-Omar and J. P. Krusius, “Conditions for space-charge reversal at thermionic heterojunctions designed for ballistic electron injection,” IEEE Electron. Dev. Lett., 9, No. 2, 81–83 (1988).

    Article  ADS  Google Scholar 

  8. A. Al-Omar and J. P. Krusius, “Self-consistent Monte Carlo study of high-field carrier transport in graded heterostructures,” J. Appl. Phys., 62, No. 9, 3825–3835 (1987).

    Article  ADS  Google Scholar 

  9. J. R. Hayes, A. F. L. Levi, and W. Wiegmann, “Hot-electron spectroscopy of GaAs,” Phys. Rev. Lett., 54, No. 14, 1570–1572 (1986).

    Article  ADS  Google Scholar 

  10. J. R. Hayes and A. F. L. Levi, “Dynamics of extreme nonequilibrium electron transport in GaAs,” IEEEJ. Quantum Electron., QE-22, No. 9, 1744–1752 (1986).

    Article  ADS  Google Scholar 

  11. M. Heilblum, “Ballistic transport and electron spectroscopy in tunneling hot electron transfer amplifiers (THETA),” in: High-Speed Electronics. Proc. Int. Conf. Stockholm, Sweden, August 7-9, 1986. B. KällbäckandH. Beneking(eds.), Springer-Verlag, Berlin—Heidelberg—New York—London—Paris—Tokyo (1986) pp. 11-18.

    Google Scholar 

  12. A. P. Long, P. H. Beton, M. J. Kelly, et al., “Hot-electron injection by graded AlxGal-xAs,” Electron. Lett., 22, No. 3, 130–131 (1986).

    Article  Google Scholar 

  13. M. Heilblum, M. I. Nathan, D. C. Thomas, et al., “Direct observation of ballistic transport in GaAs,” Phys. Rev. Lett., 55, No. 20, 2200–2203 (1985).

    Article  ADS  Google Scholar 

  14. J. R. Hayes, A. F. J. Levi, A. C. Gossard, et al., “Hot-electron transistors,” in: High-Speed Electronics. Proc. Int. Conf. Stockholm, Sweden, August 7-9, 1986, B. Källbäck and H. Beneking (eds.), Springer-Verlag, Berlin—Heidelberg-New York—London—Paris—Tokyo (1986) pp. 19-23.

    Google Scholar 

  15. A. F. J. Levi, J. R. Hayes, and R. Bhat, “’Ballistic’ injection devices in semiconductors,” Appl Phys. Lett., 48, No. 23, 1609–1611 (1986).

    Article  ADS  Google Scholar 

  16. R. J. Malik and A. F. J. Levi, “Electron beam source molecular beam epitaxial growth of analog graded AlxGal-xAs ballistic transistors,” Appl. Phys. Lett., 52, No. 8, 651–653 (1988).

    Article  ADS  Google Scholar 

  17. L. F. Eastman, “Experimental studies of ballistic transport in semiconductors,” J. Phys., 42, Suppl. No. 10, C7-263-C7–269 (1981).

    Google Scholar 

  18. C. A. Moglestue, “Monte Carlo particle model study of hot electron injection,” Physica, 129B, 552–556 (1985).

    Google Scholar 

  19. S. Imanaga, H. Kawai, K. Kaneko, et al., “Monte Carlo simulation of AlGaAs/GaAs hot-electron transistors,” J. Appl. Phys., 59, No. 9, 3281–3288 (1986).

    Article  ADS  Google Scholar 

  20. T. Wang, K. Hess, and G. J. Iafrate, “Monte Carlo simulations of hot-electron spectroscopy in planar-doped barrier transistors,” J. Appl. Phys., 59, No. 6, 2125–2128 (1986).

    Article  ADS  Google Scholar 

  21. A. P. Long, P. H. Beton, and M. J. Kelly, “Hot electron transport in heavily doped GaAs,” Semicond. Sci. Technol., 1, No. 1, 63–70 (1986).

    Article  ADS  Google Scholar 

  22. V. Gruzinskis, R. Mickevicius, J. Požela, et al., “Collective electron interaction in double-barrier GaAs structures,” Europhysics Lett., 5, No. 4, 339–341 (1988).

    Article  ADS  Google Scholar 

  23. N. A. Krall and A. W. Trivelpiece, Principles of Plasma Physics, McGraw-Hill, New York (1973).

    Google Scholar 

  24. J. M. Shannon, “A majority-carrier camel diode,” Appl. Phys. Lett., 35, No. 1, 63–65 (1979).

    Article  MathSciNet  ADS  Google Scholar 

  25. R. J. Malik, M. A. Hollis, L. F. Eastman, et al., “GaAs planar-doped barrier transistors,” in: Proc. 39th Annu. Device Research Conf. (Santa Barbara), paper VA-7, June, 1981.

    Google Scholar 

  26. L. Vescan and H. Beneking, “LPVPE-grown silicon camel diodes,” Electron. Lett., 22, No. 19, 994–996 (1986).

    Article  ADS  Google Scholar 

  27. J. M. Woodcock and J. M. Shannon, “Thermionic emission in bulk unipolar camel diodes,” Appl. Phys. Lett., 45, No. 8, 876–878 (1984).

    Article  ADS  Google Scholar 

  28. J. M. Shannon, “Hot-electron camel transistor,” Solid State Electron. Dev., 3, No. 5, 142–144 (1979).

    ADS  Google Scholar 

  29. J. M. Shannon and A. Gill, “High current gain in monolithic hot electron transistors,” Electron. Lett., 17, No. 17, 620–621 (1981).

    Article  Google Scholar 

  30. R. J. Malik, T. R. Au Coin, R. L. Ross, et al., “Planar doped barriers in GaAs by molecular beam epitaxy,” Electron. Lett., 16, No. 22, 836–838 (1980).

    Article  Google Scholar 

  31. D. Ankri, W. J. Schaff, P. Smith, et al., “High-speed GaAlAs—GaAs heterojunction bipolar transistors with near-ballistic operation,” Electron. Lett., 19, No. 4, 147–149 (1983).

    Article  ADS  Google Scholar 

  32. T. Wang, K. Hess, and G. J. Iafrate, “Time-dependent ensemble Monte Carlo simulation for planar-doped GaAs structures,” J. Appl Phys., 58, No. 2, 857–861 (1985).

    Article  ADS  Google Scholar 

  33. R. F. Kazarinov and S. Luryi, “Charge injection over triangular barriers in unipolar semiconductor structures,” Appl. Phys. Lett., 38, No. 10, 810–812 (1981).

    Article  ADS  Google Scholar 

  34. F. Berz, “Transport of electrons in monolithic hot electron Si transistors,” Solid State Electron., 29, No. 12, 1213–1222 (1986).

    Article  ADS  Google Scholar 

  35. R. S. Gupta and G. S. Chilana, “Control of the barrier height of triangular-barrier diodes by doping their intrinsic layers,” J. Appl. Phys., 63, No. 4, 1207–1211 (1988).

    Article  ADS  Google Scholar 

  36. D. C. Herbert and M. J. Kirton, “Transport in silicon monolithic hot electron structures,” Physica, 129B, 537–541 (1985).

    Google Scholar 

  37. S. Luryi and A. Kastalsky, “Hot-electron transport in heterostructure devices,” Physica, 134B, 453–465 (1985).

    Google Scholar 

  38. S. Luryi, “ Hot-electron-inj ection and resonant tunneling heteroj unction devices,” in: Heterojunction Band Discontinuities: Physics and Device Applications, F. Capaso and G. Margaritondo (eds.), Elsevier Science Publishers B. V. (1987), pp. 489-564.

    Google Scholar 

  39. S. Luryi, “An induced-base hot-electron transistor,” IEEE Electron Dev. Lett., EDL-6, No. 4, 178–180 (1985).

    Article  ADS  Google Scholar 

  40. C. Y. Chang, W. C. Liu, M. S. Jame, et al., “Induced base transistor fabricated by molecular beam epitaxy,” IEEE Electron Dev. Lett., EDL-7, No. 9, 497–499 (1986).

    Article  ADS  Google Scholar 

  41. A. F. J. Levi and T. H. Chiu, “Room-temperature operation of hot-electron transistors,” Appl. Phys. Lett., 51, No. 13, 984–986 (1987).

    Article  ADS  Google Scholar 

  42. T. H. Chiu, W. T. Tsang, and A. F. J. Levi, “Electron transport of (Al,Ga)Sb/InAs heterojunctions prepared by molecular beam epitaxy,” Electron. Lett., 23, No. 17, 917–919 (1987).

    Article  ADS  Google Scholar 

  43. M. Heilblum, “Tunneling hot electron transfer amplifiers (THETA): Amplifiers operating up to the infrared,” Solid State Electron., 24, No. 4, 343–366 (1981).

    Article  ADS  Google Scholar 

  44. N. Yokoyama, K. Imamura, T. Ohshima, et al., in: IEEE Electron Device Meeting Proceedings, San Francisco, 1984.

    Google Scholar 

  45. M. Heilblum, D. C. Thomas, C. M. Knoedler, et al., “Tunneling hot-electron transfer amplifier: A hot-electron GaAs device with current gain,” Appl. Phys. Lett., 47, No. 10, 1105–1107 (1985).

    Article  ADS  Google Scholar 

  46. M. Heilblum, I. M. Anderson, and C. M. Knoedler, “DC performance of ballistic tunneling hot-electron transfer amplifiers,” Appl. Phys. Lett., 49, No. 4, 207–209 (1986).

    Article  ADS  Google Scholar 

  47. M. Heilblum, E. Calleja, I. M. Anderson, et al., “Evidence of hot-electron transfer into an upper valley in GaAs,” Phys. Rev. Lett., 56, No. 26, 2854–2857 (1986).

    Article  ADS  Google Scholar 

  48. N. Chand, J. Klem, and H. Morkoç, “Pnp GaAs/Ge/Ge phototransistor grown by molecular beam epitaxy: Amplifications for bipolar and hot-electron-transistor,” Appl. Phys. Lett., 48, No. 7, 484–486 (1986).

    Article  ADS  Google Scholar 

  49. U. K. Reddy, J. Chen, C. K. Peng, et al., “InGaAs/InAlAs hot-electron transistor,” Appl. Phys. Lett., 48, No. 26, 1799–1801 (1986).

    Article  ADS  Google Scholar 

  50. J. Chen, U. K. Reddy, D. Mui, et al., “Enhanced ballistic transport in InGaAs/ InAlAs hot-electron transistors,” Appl. Phys. Lett., 51, No. 16, 1254–1255 (1987).

    ADS  Google Scholar 

  51. K. Imamura, S. Muto, T. Fujii, et al., “InGaAs/InAlGaAs hot-electron transistors with current gain of 15,” Electron. Lett., 22, No. 21, 1148–1150 (1986).

    Article  Google Scholar 

  52. I. Hase, K. Taira, H. Kawai, et al., “Strained GaInAs-base hot electron transistor,” Electron. Lett., 24, No. 5, 279–280 (1988).

    Article  Google Scholar 

  53. K. Y. Chen, A. Y. Cho, S. B. Christman, et al., “Measurement of the Γ—L separation in Ga0.47In0.53As by ultraviolet photo-emission,” Appl. Phys. Lett., 40, No. 5, 423–425 (1982).

    Article  ADS  Google Scholar 

  54. J. Xu and M. Shur, “Ballistic transport in hot-electron transistors,” J. Appl. Phys., 62, No. 9, 3816–3820 (1987).

    Article  ADS  Google Scholar 

  55. S. Ashmontas, Electro gradient Phenomena in Semiconductors, J. Požela (ed.) [in Russian], Mokslas, Vilnius (1984).

    Google Scholar 

  56. J. K. Požela and K. K. Repshas, “Thermal emf in semiconductors caused by hot current carriers,” Lit. Fiz. Sb., 6, No. 4, 523–537 (1966).

    Google Scholar 

  57. J. Požela, K. Repshas, and V. Shilalnikas, “Hot current carriers in Ge and Si,” in: Proc. Int. Conf. Phys. Semicond., Exeter, 1962, pp. 149-151.

    Google Scholar 

  58. S. P. Kalvėnas and J. K. Požela, “On the dependence of surface recombination velocity upon electric field strength in a semiconductor volume,” in: Proc. Biennial Cornell Conf. on Engineering Application of Electronic Phenomena, Ithaca, New York (1967), pp. 137-146.

    Google Scholar 

  59. A. Dargis, S. Zhilenis, A. Matulenis, et al., “Current—voltage characteristics of graded bandgap AlXGAL-XAS crystals,” Lit. Fiz. Sb., 17, No. 4, 493–500 (1977) [English translation: Sov. Phys. Collection, 17, No. 4, 63-67 (1977)].

    Google Scholar 

  60. K. Hess, H. Morkoç, H. Shichijo, et al., “Negative differential resistance through real-space electron transfer,” Appl. Phys. Lett., 35, No. 6, 469–471 (1979).

    Article  ADS  Google Scholar 

  61. T. H. Glisson, J. R. Häuser, and M. A. Littlejohn, “Monte Carlo simulation of real-space electron transfer in GaAs-AlGaAs,” J. Appl. Phys., 51, No. 10, 5445–5449 (1980).

    Article  ADS  Google Scholar 

  62. M. Keever, H. Shichijo, K. Hess, et al., “Measurements of hot-electron conduction and real-space transfer in GaAs-AlxGal-xAs heterojunction layers,” Appl. Phys. Lett., 38, No. 1, 36–38 (1981).

    Article  ADS  Google Scholar 

  63. K. Hess, “Real space transfer: Generalized approach to transport in confined geometries,” Solid State Electron., 31, No. 3/4, 319–324 (1988).

    Article  ADS  Google Scholar 

  64. M. Mosko, I. Novak, and P. Quittner, “On the analytical approach to the real space electron transfer in GaAs-AlGaAs heterostructures,” Solid State Electron., 31, No. 3/4, 363–366 (1988).

    Article  ADS  Google Scholar 

  65. Y. Cho, R. Sakamoto, and M. Inoue, “Real space hot electron distributions and transfer effects in heterostructures,” Solid State Electron., 31, No. 3/4, 325–328 (1988).

    Article  ADS  Google Scholar 

  66. P. D. Coleman, J. Freeman, H. Morkoç, et al., “Demonstration of anew oscillator based on real space transfer in heteroj unctions,” Appl. Phys. Lett., 40, No. 6, 493–495 (1982).

    Article  ADS  Google Scholar 

  67. K. Hess, “Electron transport in heteroj unctions and superlattices,” Physica, 117B and 118B, 723–728 (1983).

    MathSciNet  Google Scholar 

  68. A. Kastalsky and S. Luryi, “Novel real-space hot-electron transfer devices,” IEEE Electron Dev. Lett., EDL-4, No. 9, 334–336 (1983).

    Article  ADS  Google Scholar 

  69. A. Kastalsky, R. A. Kiehl, S. Luryi, et al., “Microwave generation in NERFET,” IEEE Electron Dev. Lett., EDL-5, No. 8, 321–323 (1984).

    Article  Google Scholar 

  70. S. Luryi, A. Kastalsky, A. C. Gossard, et al., “Charge injection transistor based on real-space hot-electron transfer,” IEEE Trans. Electron. Dev., ED-31, No. 6, 832–839 (1984).

    Article  ADS  Google Scholar 

  71. A. Kastalsky, S. Luryi, A. C. Gossard, et al., “Switching in NERFET circuits,” IEEE Electron Dev. Lett., EDL-6, No. 7, 347–349 (1985).

    Article  Google Scholar 

  72. A. Kastalsky, J. H. Abeles, R. Bhat, et al., “High-frequency amplification and generation in charge injection devices,” Appl Phys. Lett., 48, No. 1, 71–73 (1986).

    Article  ADS  Google Scholar 

  73. A. A. Grinberg, A. Kastalsky, and S. Luryi, “Theory of hot-electron injection in CHINT/NERFET devices,” IEEE Trans. Electron. Dev., ED-34, No. 2, 409–419 (1987).

    Article  ADS  Google Scholar 

  74. I. C. Kizilyalli, K. Hess, T. Higman, et al., “Ensemble Monte Carlo simulation of real space transfer (NERFET/CHINT) devices,” Solid State Electron., 31, No. 3/4, 355–357 (1988).

    Article  ADS  Google Scholar 

  75. A. F. J. Levi, J. R. Hayes, P. M. Platzman, et al., “Injected-hot-electron transport in GaAs,” Phys. Rev. Lett., 55, No. 19, 2071–2073 (1985).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Požela, J. (1993). Hot-Electron Transistors. In: Physics of High-Speed Transistors. Microdevices. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1242-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1242-8_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1244-2

  • Online ISBN: 978-1-4899-1242-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics