Skip to main content

Heterostructure Bipolar Transistors

  • Chapter
Physics of High-Speed Transistors

Part of the book series: Microdevices ((MDPF))

  • 272 Accesses

Abstract

Heterojunctions make it possible to obtain a qualitative improvement in the operating speed of bipolar transistors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Kroemer, “Heterostructure bipolar transistors and integrated circuits,” Proc. IEEE, 70, No. 1, 13–25 (1982).

    Article  ADS  Google Scholar 

  2. D. Arnold, A. Ketterson, T. Henderson, et al., “Determination of the valence-band discontinuity between GaAs and (Al, Ga)As by the use of p +-GaAs—(Al, Ga)As—p -GaAs capacitors,” Appl. Phys. Lett., 45, No. 11, 1237–1239 (1984).

    Article  ADS  Google Scholar 

  3. D. Ankri and A. Scavennec, “Design and evaluation of a planar AlGaAs—GaAs bipolar transistor,” Electron. Lett., 16, No. 1, 41–47 (1980).

    Article  Google Scholar 

  4. D. Ankri, A. Scavennec, C. Besombes, et al., “Diffused epitaxial AlGaAs—GaAs heterojunction bipolar transistor for high-frequency operation,” Appl. Phys. Lett., 40, No. 9, 816–818 (1982).

    Article  ADS  Google Scholar 

  5. J. Katz, N. Bar-Chaim, P. C. Chen, et al., “A monolithic integration of GaAs/AlGaAs bipolar transistor and heterostructure laser,” Appl. Phys. Lett., 37, No. 2, 211–213 (1980).

    Article  ADS  Google Scholar 

  6. K. Nagata, O. Nakajima, Y. Yamauchi, et al., “Self-aligned AlGaAs/GaAs HBT with low emitter resistance utilizing InGaAs cap layer,” IEEE Trans. Electron Dev., ED-35, No. 1, 2–7 (1988).

    Article  ADS  Google Scholar 

  7. F. Capasso, “Compositionally graded semiconductors and their device applications,” Ann. Rev. Mater. Sci., 16, 263–291 (1986).

    Article  ADS  Google Scholar 

  8. H. Ito, “Generation-recombination current in the emitter-base junction of AlGaAs/GaAs HBTs,” Jpn. J. Appl. Phys., 25, No. 9, 1400–1404 (1986).

    Article  ADS  Google Scholar 

  9. N. Chand, R. Fischer, T. Henderson, et al., “Measurement of the minority-carrier lifetime and injection efficiency in AlGaAs/GaAs heteroj unction bipolar transistors,” Appl. Phys. Lett., 48, No. 5, 367–369 (1986).

    Article  ADS  Google Scholar 

  10. H. H. Lin and S. C. Lee, “Super-gain AlGaAs/GaAs heteroj unction bipolar transistors using an emitter edge-thinning design,” Appl. Phys. Lett., 47, No. 8, 839–841 (1985).

    Article  ADS  Google Scholar 

  11. J. R. Hayes, F. Capasso, R. J. Malik, et al., “Optimum emitter grading for heterojunction bipolar transistors,” Appl. Phys. Lett., 43, No. 10, 949–951 (1983).

    Article  ADS  Google Scholar 

  12. N. Chand and H. Morkoç, “Doping effects and compositional grading in AlxGal-x As/GaAs heterojunction bipolar transistors,” IEEE Trans. Electron Dev., ED-32, No. 6, 1064–1069 (1985).

    Article  ADS  Google Scholar 

  13. P. M. Enquist, L. P. Ramberg, and L. F. Eastman, “Comparison of compositionally graded to abrupt emitter-base junctions used in the heterojunction bipolar transistor,” J. Appl. Phys., 61, No. 7, 2663–2669 (1987).

    Article  ADS  Google Scholar 

  14. K. Taira, C. Takano, H. Kawai, et al., “Emitter grading in AlGaAs/GaAs heterojunction bipolar transistor grown by metallorganic chemical vapor deposition,” Appl. Phys. Lett., 49, No. 19, 1278–1280 (1986).

    Article  ADS  Google Scholar 

  15. C. Takano, K. Taira, and H. Kawai, “Improving collector-current uniformity in emitter-graded AlGaAs/GaAs heterojunction bipolar transistors,” IEEE Electron Dev. Lett., EDL-9, No. 3, 125–127 (1988).

    Article  ADS  Google Scholar 

  16. J. F. Palmier, A. Sibille, J. C. Harmand, et al., “AlGaAs/GaAs bipolar transistors with a modulation-doped superlattice emitter,” Electron. Lett., 23, No. 18, 936–938 (1987).

    Article  Google Scholar 

  17. S. L. Su, R. Fischer, W. G. Lyons, et al., “Double heterojunction GaAs/AlxGal-xAs bipolar transistors prepared by molecular beam epitaxy,” J. Appl. Phys., 54, No. 11, 6725–6731 (1983).

    Article  ADS  Google Scholar 

  18. J. R. Hayes, F. Capasso, A. C. Gossard, et al., “Bipolar transistor with graded band-gap base,” Electron. Lett., 19, No. 11, 410–411 (1983).

    Article  Google Scholar 

  19. F. Capasso, W. T. Tsang, C.G. Bethea, et al., “New graded band-gap picosecond phototransistor,” Appl. Phys. Lett., 42, No. 1, 93–95 (1983).

    Article  ADS  Google Scholar 

  20. J. Yoshida, M. Kurata, M. Obara, et al., “Emitter-base bandgap grading effects on AlGaAs/GaAs heterojunction bipolar transistors,” IEEE Trans. Electron Dev., ED-31, No. 12, 1979 (1984).

    Article  Google Scholar 

  21. R. J. Malik, F. Capasso, R. A. Stall, et al., “High-gain, high-frequency AlGaAs/GaAs graded band-gap base bipolar transistors with a Be diffusion setback layer in the base,” Appl. Phys. Lett., 46, No. 6, 600–602 (1985).

    Article  ADS  Google Scholar 

  22. S. I. Balakauskas et al., “Junction processes in a bipolar transistor prepared from a graded bandgap SixGel-x structure,” in: Tezisi Dokladov X Vses. Konf. po Fizike Poluprovodnikov, Minsk, 17–19 September, 1985, pp. 133-134.

    Google Scholar 

  23. Y. Yamauchi and T. Ishibashi, “Equivalent circuit and ECL ring oscillators of graded-bandgap base GaAs/AlGaAs HBTs,” Electron. Lett., 22, No. 1, 18–19 (1986).

    Article  ADS  Google Scholar 

  24. C. M. Maziar, M. E. Klausmeier-Brown, S. Bandyopadhyay, et al., “Monte Carlo evaluation of electron transport in heterojunction bipolar transistor base structures,” IEEE Trans. Electron Dev., ED-33, No. 7, 881–888 (1986).

    Article  ADS  Google Scholar 

  25. M. B. Das, “High-frequency performance limitations of millimeter-wave heterojunction bipolar transistors,” IEEE Trans. Electron Dev., ED-35, No. 5, 604–614 (1988).

    Article  ADS  Google Scholar 

  26. C. Chen and S. Lee, “The effect of the base-collector potential spike on the common-emitter I–V characteristics of AlGaAs double-heterojunctionbipolar transistors,” IEEE Trans. Electron Dev., ED-34, No. 7, 1463–1469 (1987).

    Article  Google Scholar 

  27. L. C. Chiu, Ch. Harder, S. Margalit, et al., “Graded collector heterojunction bipolar transistor,” Appl. Phys. Lett., 44, No. 1, 105–106 (1984).

    Article  ADS  Google Scholar 

  28. M. Kurata, R. Katoh, J. Yoshida, et al., “A model-base comparison: GaAs/AlGaAs HBT versus silicon bipolar,” IEEE Trans. Electron Dev., ED-33, No. 10, 1413–1419 (1986).

    Article  ADS  Google Scholar 

  29. P. M. Asbeck, M. F. Chang, K. C. Wang, et al., “Heterojunction bipolar transistors for microwave and millimeter-wave integrated circuits,” IEEE Trans. Microwave Theory and Techniques, MTT-35, No. 12, 1462–1470 (1987).

    Article  ADS  Google Scholar 

  30. M. Madihian, K. Honjo, H. Toyoshima, et al., “The design, fabrication, and characterization of a novel electrode structure self-aligned HBT with a cutoff frequency of 45 GHz,” IEEE Trans. Electron Dev., ED-34, No. 7, 1419–1428 (1987).

    Article  ADS  Google Scholar 

  31. M. F. Chang, P. M. Asbeck, K. C. Wang, et al., “AlGaAs/GaAs heterojunction bipolar transistors fabricated using a self-aligned dual-lift-off process,” IEEE Electron. Dev. Lett., EDL-8, No. 7, 303–305 (1987).

    Article  ADS  Google Scholar 

  32. C. Z. Chen, S. C. Lee, and H. H. Lin, “Design of n-p-n AlGaAs double heterojunction bipolar transistors,” J. Appl. Phys., 62, No. 9, 3976–3979 (1987).

    Article  ADS  Google Scholar 

  33. N. Chand, R. Fischer, T. Henderson, et al., “Temperature dependence of current gain in AlGaAs/GaAs heterojunction bipolar transistors,” Appl. Phys. Lett., 45, No. 10, 1086–1088 (1984).

    Article  ADS  Google Scholar 

  34. H. Ito, T. Ishibashi, and T. Sugeta, “Fabrication and characterization of AlGaAs/GaAs heterojunction bipolar transistors,” IEEE Trans. Electron Dev., ED-34, No. 2, 224–229 (1987).

    Article  ADS  Google Scholar 

  35. M. F. Chang, P. M. Asbeck, K. C. Wang, et al., “AlGaAs/GaAs heterojunction bipolar transistor circuits with improved high-speed performance,” Electron. Lett., 22, No. 22, 1173–1174 (1986).

    Article  Google Scholar 

  36. M. Kurata, R. Katoh, and J. Yoshida, “Ring oscillator circuit simulation with physical model for GaAs/ AlGaAs heteroj unction bipolar transistors,” IEEE Trans. Electron Dev., ED-32, No. 6, 1086–1091 (1985).

    Article  ADS  Google Scholar 

  37. M. Azuma, “Heterojunction devices — heterojunction bipolar transistors,” JST Reports, 2, No. 1, 81–85 (1986).

    Google Scholar 

  38. M. Inada, Y. Ota, A. Nakagawa, M. Yanagihara, et al., “AlGaAs/GaAs heterojunction bipolar transistors with small size fabricated by a multiple self-alignment process using one mask,” IEEE Trans. Electron Dev., ED-34, No. 12, 2405–2411 (1987).

    Article  Google Scholar 

  39. O. Nakajima, K. Nagata, Y. Yamauchi, et al., “High-performance AlGaAs/GaAs HBTs utilizing proton-implanted buried layers and highly doped base layers,” IEEE Trans. Electron Dev., ED-34, No. 12, 2393–2398 (1987).

    Article  Google Scholar 

  40. J. P. Bailbe, A. Marty, and G. Rey, “III–V heterojunction bipolar transistors,” Solid-State Electron., 30, No. 11, 1159–1169 (1987).

    Article  ADS  Google Scholar 

  41. R. J. Malik, L. M. Lunardi, J. F. Walker, et al., “A planar-doped 2D-hole gas base AlGaAs/GaAs heterojunction bipolar transistor grown by molecular beam epitaxy,” IEEE Electron, Dev. Lett., EDL-9, No. 1, 7–9 (1988).

    Article  ADS  Google Scholar 

  42. J. R. Hayes, F. Capasso, R. J. Malik, et al., “Elimination of the emitter-collector offset voltage in heterojunction bipolar transistors,” in: Int. Electron. Devices Meeting Tech. Dig., 686-688 (1983).

    Google Scholar 

  43. S. Tiwari, S. L. Wright, and A. W. Kleinsasser, “Transportand related properties of (Ga,Al)As/GaAs double heterostructure bipolar junction transistors,” IEEE Trans. Electron Dev., ED-34, No. 2, 185–187 (1987).

    Article  ADS  Google Scholar 

  44. M. S. Lundstrom, “An Ebers-Moll model for the HBT,” Solid-State Electron., 29, No. 11, 1173–1179(1986).

    Article  ADS  Google Scholar 

  45. J. Tasselli, A. Marty, J. P. Bailbe, et al., “Verification of the charge-control model for AlGaAs/GaAs heterojunction bipolar transistors,” Solid-State Electron., ED-29, No. 9, 919–923 (1986).

    Article  ADS  Google Scholar 

  46. A. F. J. Levi, J. R. Hayes, A. C. Gossard, et al., “Electroluminescence from the base of a GaAs/AlGaAs double heterojunction bipolar transistor,” Appl. Phys. Lett., 50, No. 2, 98–100 (1987).

    Article  ADS  Google Scholar 

  47. J. R. Hayes, A. F. J. Levi, A. C. Gossard, et al., “Base transport dynamics in a heterojunction bipolar transistor,” Appl. Phys. Lett., 49, No. 21, 1481–1483 (1986).

    Article  ADS  Google Scholar 

  48. L. P. Ramberg and T. Ishibashi, “Abrupt interface AlGaAs/GaAs heterojunction bipolar transistors: Carrier heating and junction characteristics,” J. Appl. Phys., 63, No. 3, 809–820 (1988).

    Article  ADS  Google Scholar 

  49. D. A. Sunderland and P.D. Dapkus, “Optimizing n-p-n and p-n-p heterojunction bipolar transistors for speed,” IEEE Trans. Electron Dev., ED-34, No. 2, 367–376 (1987).

    Article  ADS  Google Scholar 

  50. B. Bayraktaroglu, N. Camilleri, and S. A. Lambert, “Microwave pnp AlGaAs/GaAs heterojunction bipolar transistor,” Electron. Lett., 24, No. 4, 228–229 (1988).

    Article  Google Scholar 

  51. D. A. Sunderland, J. M. Haden, K. M. Dzurko, et al., “A fully planar p-n-p heterojunction bipolar transistor,” IEEE Electron. Dev. Lett., EDL-9, No. 3, 116–118 (1988).

    Article  ADS  Google Scholar 

  52. G. W. Taylor and J. G. Simmons, “The bipolar inversion channel field-effect transistor (BICFET) — A new field-effect solid state device: Theory and structures,” IEEE Trans. Electron Dev., ED-32, No. 11, 2345–2367 (1985).

    Article  ADS  Google Scholar 

  53. G. W. Taylor, M. S. Lebby, A. I. B. Tell, et al., “Demonstration of a p-channel GaAs/AlGaAs BICFET,” IEEE Electron. Dev. Lett., EDL-9, No. 2, 84–86 (1988).

    Article  ADS  Google Scholar 

  54. T. R. Chen, K. Utaka, H. Y. Zhung, et al., “Vertical integration of an InGaAsP/InP heterojunction bipolar transistor and a double heterostructure laser,” Appl. Phys. Lett., 50, No. 14, 874–876 (1987).

    Article  ADS  Google Scholar 

  55. S. Chandrasekhar, J. C. Campbell, A. G. Dentai, et al., “Heterojunction InP/GaInAs phototransistors/bipolar transistors grown by MOVPE,” Electron. Lett., 24, No. 6, 319–320 (1988).

    Article  Google Scholar 

  56. H. Kräutle, “Implanted planar GaInAsP/InP hetero-bipolar transistor,” Electron. Lett., 22, No. 22, 1191–1193 (1986).

    Article  Google Scholar 

  57. T. Won and H. Morkoç, “High-speed performance of InP/In0.53Ga0.47/InP double-heterojunction bipolar transistors,” Appl. Phys. Lett., 52, No. 7, 552–554 (1988).

    Article  ADS  Google Scholar 

  58. R. N. Nottenburg, H. Temkin, M. B. Panish, et al., “High-gainInGaAs/InPHBTs grown by gas source molecular beam epitaxy,” Appl. Phys. Lett., 49, No. 17, 1112–1114 (1986).

    Article  ADS  Google Scholar 

  59. P. A. Houston, C. Blaauw, A. Margittai, et al., “Double-heterojunction bipolar transistors in InP/GaInAs grown by metal—organic chemical vapour deposition,” Electron. Lett., 23, No. 18, 931–932 (1987).

    Article  Google Scholar 

  60. H. Kamhe, J. C. Vlcek, and C. G. Fonstad, “(InGa)As/InP n-p-n heterojunction bipolar transistors grown by liquid phase epitaxy with high DC current gain,” IEEE Electron. Dev. Lett., EDL-5, 172–175 (1984).

    Google Scholar 

  61. P. Schuitemaker, P. A. Claxton, J. S. Roberts, et al., “InP/InGa As double HBTs grown by MBE,” Electron. Lett., 22, No. 15, 781–783 (1986).

    Article  Google Scholar 

  62. J. R. Hayes, R. Bhat, H. Schumacher, et al., “OMCVD-grown InP/GaInAs heterojunctionbipolartransistors,” Electron. Lett., 23, No. 24, 1298–1299 (1987).

    Article  Google Scholar 

  63. N. Emeis and H. Beneking, “InP/GaInAs heterojunction bipolar transistors with improved electrical characteristics grown on strained buffer layers,” Electron. Lett., 23, No. 6, 295–296 (1987).

    Article  ADS  Google Scholar 

  64. O. Sugiura, A. G. Dentai, C. H. Joyner, et al., “High-current-gain InGaAs/InP double-heterojunction bipolar transistors grown by metal-organic vapor phase epitaxy,” IEEE Electron. Dev. Lett., EDL-9, No. 5, 253–255 (1988).

    Article  ADS  Google Scholar 

  65. N. Emeis and H. Beneking, “Fabrication of an NpM GaInAs/InP bipolar transistor by a two-step epitaxial process,” Electron. Lett., 22, No. 11, 590–591 (1986).

    Article  Google Scholar 

  66. G. J. Sullivan, P. M. Asbeck, M. F. Chang, et al., “AlGaAs/InGaAs/GaAs strained-layer heteroj unction bipolar transistors by molecular beam epitaxy,” Electron. Lett., 22, No. 8, 419–421 (1986).

    Article  Google Scholar 

  67. L. P. Ramberg, P. M. Enquist, Y. K. Chen, et al., “Lattice-strained heteroj unction InGaAs/GaAs bipolar structures: Recombination properties and device performance,” J. Appl. Phys., 61, No. 3, 1234–1236 (1987).

    Article  ADS  Google Scholar 

  68. L. P. Ramberg, Y. K. Chen, P. M. Enquist, et al., “High-frequency performance of lattice-strained heteroj unction GaInAs/GaAs bipolar transistors,” Electron. Lett., 22, No. 21, 1123–1125 (1986).

    Article  Google Scholar 

  69. N. A. Bannov, V. I. Ryzhii, and A. A. Svyatchenko, “High-frequency properties of submicron bipolar heterotransistors,” Élektronnaya Tekhnika, Ser. Élektronika SVCh, No. 7 (379), 3-9 (1985).

    Google Scholar 

  70. J. Chen, T. Won, M. S. Ünlü, et al., “GaAs—Si heteroj unction bipolar transistor,” Appl. Phys. Lett., 52, No. 10, 822–824 (1988).

    Article  ADS  Google Scholar 

  71. G. L. Patton, S. S. Iyer, S. L. Delage, et al., “Silicon—germanium-base heteroj unction bipolar transistors by molecular beam epitaxy,” IEEE Electron. Dev. Lett., EDL-9, No. 4, 165–167 (1988).

    Article  ADS  Google Scholar 

  72. H. Temkin, J. C. Bean, A. Antreasyan, et al., “GexSil-x strained-layer HBTs,” Appl. Phys. Lett., 52, No. 13, 1089–1091 (1988).

    Article  ADS  Google Scholar 

  73. T. Sugii, T. Ito, Y. Fukumura, et al., “μ-SiC/Si heteroj unction bipolar transistors with high current gain,” IEEE Electron. Dev. Lett., EDL-9, No. 2, 87–89 (1988).

    Article  ADS  Google Scholar 

  74. J. Symons, M. Ghannam, A. Neugroschel, et al., “Silicon heteroj unction bipolar transistors with amorphous and microcrystalline emitters,” Solid-State Electron., 30, No. 11, 1143–1145 (1987).

    Article  ADS  Google Scholar 

  75. J. Chen, G. B. Gao, M. S. Ünlü, and H. Morkoc, “High-frequency output characteristics of AlGaAs/GaAs heterojunction bipolar transistors,” Electron. Lett., 26, 2058–2060 (1990).

    Article  ADS  Google Scholar 

  76. M. F. Chang and P. M. Asbeck, “III-V heterojunction bipolar transistors for highspeed applications,” Int. J. High Speed Electron., 1, No. 3-4, 245–301 (1990).

    Article  Google Scholar 

  77. S. S. Iyer, G. L. Patton, S. L. Delage, et al., “Silicon-germanium base heterojunction bipolar transistors by molecular beam epitaxy,” IEDM Tech. Dig., 874-876 (1987).

    Google Scholar 

  78. T. Tatsumi, H. Hirayama, and N. Aizaki, “Si/Ge0.3Si0.7As/Siheterojunction bipolar transistor made with Si molecular beam epitaxy,” Appl. Phys. Lett., 52, 895–897 (1988).

    Article  ADS  Google Scholar 

  79. G. L. Patton, D. L. Harame, J. M. C. Stork, et al., “Graded SiGe-basepoly-emitter heterojunction bipolar transistors,” IEEE Electron. Dev. Lett., EDL-10, 534–536 (1989).

    Article  ADS  Google Scholar 

  80. G. B. Gaoand H. Morkoc, “Base transit time for SiGe base heterojunction bipolar transistors,” Electron. Lett., 27, 1408–1410 (1991).

    Article  Google Scholar 

  81. G. L. Patton, J. H. Comfort, B. S. Meyerson, et al., “75-GHz f T SiGe-base heterojunction bipolar transistors,” IEEE Electron Dev. Lett., EDL-11, 171–173 (1990).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Požela, J. (1993). Heterostructure Bipolar Transistors. In: Physics of High-Speed Transistors. Microdevices. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1242-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1242-8_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1244-2

  • Online ISBN: 978-1-4899-1242-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics