Skip to main content

Homojunction Field-Effect and Bipolar Transistors

  • Chapter
Book cover Physics of High-Speed Transistors

Part of the book series: Microdevices ((MDPF))

  • 278 Accesses

Abstract

Homojunction transistors are transistors that have been fabricated from a pure semiconductor. There are, in principle, two ways to increase the operating speed of homojunction field-effect and bipolar transistors: reduce the length of the transistor’s operating area (gate, emitter, base) to the greatest possible extent and use semiconductors which have high carrier mobility and maximum drift velocity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Yoshii, M. Tomizawa, and K. Yokoyama, “Accurate modeling for submicrometer-gate Si and GaAs MESFETs using two-dimensional particle simulation,” IEEE Trans. Electron Dev., ED-30, No. 10, 1376–1380 (1983).

    ADS  Google Scholar 

  2. T. J. Maloney and J. Frey, “Transient and steady-state electron transport properties of GaAs and InP,” J. Appl. Phys., 48, No. 2, 781–787 (1977).

    ADS  Google Scholar 

  3. K. Blotekjaer, “Transport equations for electrons in two-valley semiconductors,” IEEE Trans. Electron Dev., ED-17, No. 1, 38–47 (1970).

    Google Scholar 

  4. R. K. Cook and J. Frey, “Two-dimensional numerical simulation of energy transport effects in Si and GaAs MESFETs,” IEEE Trans. Electron Dev., ED-29, No. 6, 970–977 (1982).

    Google Scholar 

  5. W. R. Curtice and Y. H. Yun, “A temperature model for the GaAs MESFET,” IEEE Trans. Electron Dev., ED-28, No. 8, 954–962 (1981).

    Google Scholar 

  6. R. Stratton, “Diffusion of hot and cold electrons in semiconductor barriers,” Phys. Rev., 126, No. 6, 2002–2014 (1962).

    ADS  Google Scholar 

  7. K. Yamasaki and M. Hirayama, “Determination of effective saturation velocity in n + self-aligned GaAs MESFETs with submicrometer gate lengths,” IEEE Trans. Electron Dev., ED-33, No. 11, 1652–1657 (1986).

    Google Scholar 

  8. R. Stenzel, H. Elschner, and R. Spallek, “Numerical simulation of GaAs MESFETs including velocity overshoot,” Solid-State Electron., 30, No. 8, 873–877 (1987).

    ADS  Google Scholar 

  9. M. B. Das, “Millimeter-wave performance of ultrasubmicrometer-gate field-effect transistors: a comparison of MODFET, MESFET, and PBT structures,” IEEE Trans. Electron. Dev., ED-34, No. 7, 1429–1440 (1987).

    ADS  Google Scholar 

  10. E. Johnson and A. Rose, “Simple general analysis of amplifier devices with emitter, control and collector functions,” Proc. IRE, 47, No. 3, 407–418 (1959).

    Google Scholar 

  11. M. B. Das, “Charge-control analysis of MOS and junction-gate field-effect transistors,” Proc. IEEE (London), 113, 1240–1248 (1966).

    Google Scholar 

  12. M. F. Abusaid and J. R. Hauser, “Calculations of high-speed performance for submicrometer ion-implanted GaAs MESFET devices,” IEEE Trans. Electron Dev., ED-33, No. 7, 913–918 (1986).

    ADS  Google Scholar 

  13. P. Godts, J. Vanbremeersch, E. Constant, et al., “Realization of very high transconductance GaAs MESFETs,” Electron Lett., 24, No. 12, 775–776 (1988).

    ADS  Google Scholar 

  14. P. C. Chao, P. M. Smith, K. H. G. Duh, et al., “60 GHz GaAs low-noise MESFETs by molecular beam epitaxy,” Presented at the Device Research Conf., Amherst, MA, Session IVA, Paper No. 8, June 24, 1986.

    Google Scholar 

  15. S. I. Long, B. M. Welch, R. Tsukka, et al., “Super high-speed GaAs integrated circuits,” TIIER, 70, No. 1, 44–58 (1982).

    Google Scholar 

  16. R. S. Eden, “A comparison of the prospects for different GaAs devices in super high-speed VLSI,” TIIER, 70, No. 1, 8–17 (1982).

    MathSciNet  Google Scholar 

  17. G. W. Taylor and R. J. Bayruns, “A comparison of Si MOSFET and GaAs MESFET enhancement/depletion logic performance,” IEEE Trans. Electron Dev., ED-32, No. 9, 1633–1641 (1985).

    Google Scholar 

  18. P. C. Chao, P. M. Smith, U. K. Mishra, et al., “Quarter-micron low-noise high-electron mobility transistors,” Proc. IEEE Cornell Conf. Advanced Concepts in High-Speed Semicond. Dev. and Circuits (July 29-31, 1985) pp. 163-171.

    Google Scholar 

  19. B. Kim, H. Q. Tserng, and H. D. Shih, Proc. IEEE Cornell Conf. Advanced Concepts in High-Speed Semicond. Dev. and Circuits (July 29-31, 1985) pp. 181-188.

    Google Scholar 

  20. P. M. Smith, P. C. Chao, U. K. Mishra, et al., “Millimeter-wave power performance of 0.25 μm HEMTs and GaAs FETs,” Proc. IEEE Cornell Conf. Advanced Concepts in High-Speed Semicond. Dev. and Circuits (July 29-31, 1985) pp. 189-198.

    Google Scholar 

  21. B. Kim, M. Wurtele, H. D. Shih, et al., “GaAs power MESFET with 41-percent power added efficiency at 35 GHz,” IEEE Electron Dev. Lett., EDL-9, No. 2, 57–58 (1988).

    ADS  Google Scholar 

  22. Y. C. Pao, W. Ou, and J. S. Harris, “< 110 >-oriented GaAs MESFETs,” IEEE Electron Dev. Lett., EDL-9, No. 3, 119–121 (1988).

    ADS  Google Scholar 

  23. U. K. Mishra et al., “MBE grown GaAs MESFETs with ultra-high g m and f T,” IEDM Tech. Dig., 829-831 Dec. 7-1 (1986).

    Google Scholar 

  24. R. A. Sadler and L. F. Eastman, “High-speed logic at 300 K with self-aligned submicrometer-gate GaAs MESFETs,” IEEE Electron Dev. Lett., EDL-4, No. 7, 215–217 (1983).

    ADS  Google Scholar 

  25. M. Feng, H. Kanber, V. K. Eu, et al., “Ultrahigh frequency operation of ion-implanted GaAs metal-semiconductor field-effect transistors,” Appl. Phys. Lett., 44, No. 2, 231–233 (1984).

    ADS  Google Scholar 

  26. M. S. Gupta, O. Pitzalis, Jr., S. E. Rosenbaum, et al., “Microwave noise characterization of GaAs MESFETs: Evaluation by on-wafer low-frequency output noise current measurement,” IEEE Trans. Microwave Theory and Techniques, MTT-35, No. 12, 1208–1218 (1987).

    ADS  Google Scholar 

  27. K. Wang and S. Wang, “State-of-the-art ion-implanted low-noise GaAs MESFETs and high-performance monolithic amplifiers,” IEEE Trans. Electron Dev., ED-34, No. 12, 2610–2615 (1987).

    Google Scholar 

  28. J. A. Calviello, P. R. Bie, R. J. Pomian, et al., “A novel GaAs Schottky-drain power FET for microwave application,” IEEE Trans. Electron Dev., ED-32, No. 12, 2844–2847 (1985).

    ADS  Google Scholar 

  29. K. Heime, H. Dämbkes, and W. Brockerhoff, “GaAs MESFET with a highly doped channel,” in: Extended Abstracts of the 16th (1984 International) Conference on Solid State Devices and Materials. Kobe (Japan) (1984), pp. 375-378.

    Google Scholar 

  30. J. G. Giglio and J. R. J. Giglio, “Projected frequency limits of GaAs MESFETs,” IEEE Trans. Microwave Theory Tech., 39, No. 1, 142–146 (1991).

    ADS  Google Scholar 

  31. B. Kim, H. Q. Tserng, and H. D. Shih, “Millimeter-wave GaAs FETs prepared by MBE,” IEEE Electron Dev. Lett., EDL-6, No. 1, 1–2 (1985).

    ADS  Google Scholar 

  32. M. Kobiki, Y. Mitsui, Y. Sasaki, et al., “A Ka-band GaAs power MMIC,” in: IEEE 1985 Microwave and Millimeter-Wave Monolithic Circuits Symposium Digest, pp. 31-34.

    Google Scholar 

  33. B. Kim, H. M. Macksey, H. Q. Tserng, et al., “Millimeter-wave monolithic GaAs power FET amplifier,” in: 1986 GaAs IC Symposium Tech. Digest, pp. 61-63.

    Google Scholar 

  34. B. Kim, H. M. Macksey, H. Q. Tserng, et al., “Mm-wave monolithic GaAs power FET amplifiers,” Microwave J., 30, No. 1, 153–163 (1987).

    ADS  Google Scholar 

  35. G. C. Taylor, M. Eron, D. W. Bechtle, et al., “High-efficiency 35 GHz GaAs MESFETs,” IEEE Trans. Electron Dev., ED-34, No. 6, 1259–1262 (1987).

    ADS  Google Scholar 

  36. H. Q. Tserng and B. Kim, “O-band GaAs MESFET oscillator with 30% efficiency,” Electron. Lett., 24, No. 2, 83–84 (1988).

    ADS  Google Scholar 

  37. R. P. Smith, D. A. Seielstad, P. Ho, et al., “Impulse-doped GaAs power FETs for high efficiency operation,” Electron. Lett., 24, No. 10, 597–598 (1988).

    ADS  Google Scholar 

  38. H. Q. Tserng and B. Kim, “High-efficiency β-band GaAs FET oscillator,” Electron. Lett., 20, 297–298 (1984).

    ADS  Google Scholar 

  39. H. Q. Tserng and B. Kim, “110 GHz GaAs FET oscillator,” Electron. Lett., 21, No. 5, 178–179 (1985).

    ADS  Google Scholar 

  40. H. Q. Tserng and B. Kim, “A 115 GHz monolithic GaAs FET oscillator,” in: 1985 GaAs IC Symposium Tech. Digest, pp. 11-13.

    Google Scholar 

  41. D. H. Evans, “High-efficiency Ka-band MESFET oscillators,” Electron. Lett., 21, No. 7, 254–255 (1985).

    ADS  Google Scholar 

  42. M. I. Aksun, H. Morkoç, L. F. Lester, et al., “Performance of quarter-micron GaAs metal-semiconductor field-effect transistors on Si substrates,” Appl. Phys. Lett., 49, No. 24, 1654–1655 (1986).

    ADS  Google Scholar 

  43. R. J. Fischer, N. Chand, W. P. Kopp, et al., “A dc and microwave comparison of GaAs MESFETs on GaAs and Si structures,” IEEE Trans. Electron Dev., ED-33, No. 2, 206–213 (1986).

    ADS  Google Scholar 

  44. S. Fang, K. Adomi, S. Iyer, et al., “Gallium arsenide and other compound semiconductors on silicon,” J. Appl Phys., 68, No. 7, R31–R58 (1990).

    ADS  Google Scholar 

  45. R. Fischer and H. Morkoç, “III–V semiconductors on Si substrates,” in: Extended Abstracts of the 18th (1986 International) Conference on Solid State Devices and Materials, Tokyo (1986), pp. 105-108.

    Google Scholar 

  46. E. Constant, N. Caglio, J. Chevalier, et al., “Fabrication of a new type of field-effect transistor using neutralization of shallow donors by atomic hydrogen in n-GaAs(Si),” Electron. Lett., 23, No. 16, 841–843 (1987).

    ADS  Google Scholar 

  47. J. Chevalier, W. C. Dautremont-Smith, W. C. Tu, et al., “Donor neutralization in GaAs(Si) by atomic hydrogen,” Appl. Phys. Lett., 47, No. 2, 108–110 (1985).

    ADS  Google Scholar 

  48. A. Jalil, J. Chevalier, J. C. Pesant, et al., “Infrared spectroscopic evidence of silicon-related hydrogen complexes in hydrogenated n-type GaAs doped with silicon,” Appl. Phys. Lett., 50, No. 8, 439–441 (1987).

    ADS  Google Scholar 

  49. A. Jalil, J. Chevalier, R. Azoulay, et al., “Electron mobility studies of the donor neutralization by atomic hydrogen in GaAs doped with silicon,” J. Appl. Phys., 59, No. 11, 3774–3777 (1986).

    ADS  Google Scholar 

  50. K.-F. Berggrent and D. J. Newson, “A novel basis set for quantum calculations in MESFET and JFET devices,” Semicond. Sci. Technol, 1, No. 4, 246–255 (1986).

    ADS  Google Scholar 

  51. G. Roos and K.-F. Berggrent, “Quantum limit of a narrow-channel GaAs metal-semiconductor field-effect transistor,” J. Appl. Phys., 62, No. 11, 4625–4628 (1987).

    ADS  Google Scholar 

  52. V. Denis and J. Požela, Hot Electrons [in Russian], Mintis, Vilnius (1971).

    Google Scholar 

  53. F. Januschewski and H. J. Erzgräber, “Modeling the influence of hot electrons on the transfer characteristic of short-channel MOSFETs,” Phys. St. Sol. (a), 99, No. 2, 649–656 (1987).

    ADS  Google Scholar 

  54. J. H. Abeles, C. W. Tu, S. A. Schwarz, et al., “Nonlinear high-frequency response of GaAs metal-semiconductor field-effect transistors,” Appl. Phys. Lett., 48, No. 23, 1620–1622 (1986).

    ADS  Google Scholar 

  55. J. H. Abeles, R. F. Leheny, G. K Chang, et al., “Experimental measurement of a high-field dipole in GaAs field-effect transistors,” Appl. Phys. Lett., 49, No. 20, 1387–1389 (1986).

    ADS  Google Scholar 

  56. R. E. Thorne, S. L. Su, R. J. Fischer, et al., “Analysis of camel-gate FETs (CAMFETs),” IEEE Trans. Electron Dev., ED-30, No. 3, 212–216 (1983).

    Google Scholar 

  57. R. Anholt and T. W. Sigmon, “Mechanism of EL2 effects on GaAs field-effect transistor threshold voltages,” J. Appl. Phys., 62, No. 9, 3995–3997 (1987).

    ADS  Google Scholar 

  58. P. Dobrilla and J. S. Blakemore, “Mapping of GaAs wafers by quantitative infrared microscopy,” J. Appl. Phys., 61, No. 4, 1442–1448 (1987).

    ADS  Google Scholar 

  59. C. H. Chen, M. Shur, and A. Peczalski, “Trapping-enhanced temperature variation of the threshold voltage of GaAs MESFETs,” IEEE Trans. Electron Dev., ED-33, No. 6, 792–797 (1986).

    Google Scholar 

  60. S. Miyazawa and K. Wada, “Mechanisms for the threshold voltage shift of a GaAs field-effect transistor around dislocations,” Appl. Phys. Lett., 48, No. 14, 905–907 (1986).

    ADS  Google Scholar 

  61. R. Khanna and M. B. Das, “Roles of shallow and deep electron traps causing backgating in GaAs metal-semiconductor field-effect transistors,” Appl. Phys. Lett., 48, No. 14, 937–939 (1986).

    ADS  Google Scholar 

  62. K. Y. Lee, M. Al-Mudares, S. P. Beaumont, et al., “Very-high transconductance short-channel GaAs MESFETs with Ga0.3Al0.7As buffer layer” Electron. Lett., 23, No. 1, 11–12 (1987).

    ADS  Google Scholar 

  63. B. Kim, M. Wurtele, H. D. Shih, et al., “High-performance GaAs power MESFET with AlGaAs buffer layer,” Electron. Lett., 23, No. 19, 1008–1010 (1987).

    Google Scholar 

  64. P. A. Folkes, “Measurement of the low-field electron mobility and compensation ratio profiles in GaAs field-effect transistors,” Appl. Phys. Lett., 48, No. 6, 431–433 (1986).

    ADS  Google Scholar 

  65. P. A. Folkes, “Characteristics and mechanism of 1/f noise in GaAs Schottky barrier field-effect transistors,” Appl. Phys. Lett., 48, No. 5, 344–346 (1986).

    ADS  Google Scholar 

  66. J. S. Barrera and R. J. Archer, “InP Schottky-gate field-effect transistors,” IEEE Trans. Electron Dev., ED-22, No. 11, 1023–1030 (1975).

    ADS  Google Scholar 

  67. S. Loualiche, H. L’Haridon, E. LeCorre, et al., “Schottky and field-effect transistor fabrication on InP and GalnAs,” Appl. Phys. Lett., 52, No. 7, 540–542 (1988).

    ADS  Google Scholar 

  68. D. L. Lile, D. A. Collins, L. G. Meiners, et al., “n-channel inversion-mode InP MISFET,” Electron. Lett., 14, No. 20, 657–659 (1978).

    Google Scholar 

  69. T. Kawakami and M. Okamura, “InP/Al2O3 n-channel inversion-mode MISFETs using sulphur-diffused source and drain,” Electron. Lett., 15, No. 16, 502–503 (1979).

    ADS  Google Scholar 

  70. L. F. Messick, “A high-speed monolithic InP MISFET integrated logic inverter,” IEEE Trans. Electron Dev., ED-28, No. 2, 218–221 (1981).

    ADS  Google Scholar 

  71. L. F. Messick, “Low-power high-speed InP MISFET direct-coupled FET logic,” IEEE Trans. Electron Dev., ED-31, No. 6, 763–766 (1984).

    ADS  Google Scholar 

  72. A. Antreasyan, P. A. Garbinski, V. D. Mattera, et al., “High-speed operation of InP metal-insulator-semiconductor field-effect transistors grown by chloride vapor phase epitaxy,” Appl. Phys. Lett., 51, No. 14, 1097–1099 (1987).

    ADS  Google Scholar 

  73. M. Matsui, Y. Hirayama, and T. Sugano, “InP MISFETs with plasma anodic Al2O3 and interlayed native oxide gate insulators,” IEEE Electron Dev. Lett. EDL-4, No. 9, 308–310 (1983).

    Google Scholar 

  74. T. Sawada, S. Itagaki, H. Hasegawa, et al., “InP MISFETs with Al2O3 / native oxide double-layer gate insulators,” IEEE Trans. Electron Dev., ED-33, No. 8, 1038–1043 (1984).

    ADS  Google Scholar 

  75. Y. Hirota, M. Okamura, T. Hisaki, et al., “Temperature dependence of electron mobility for inversion-mode InP metal-insulator-semiconductor field-effect transistors,” J. Appl. Phys., 61, No. 1, 277–283 (1987).

    ADS  Google Scholar 

  76. Y. Hirota, T. Hisaki, and O. Mikami, “Inversion-mode InP MISFET using a photochemical phosphorus nitride gate insulator,” Electron. Lett., 21, No. 16, 690–691 (1985).

    ADS  Google Scholar 

  77. K. Oigawa, S. Uekusa, Y. Sugiyama, et al., “Self-aligned inversion-mode InP MISFET,” Jpn. J. Appl. Phys., 26, No. 10, 1719–1721 (1987).

    ADS  Google Scholar 

  78. K. P. Pande and D. Gutierrez, “Channel mobility enhancement in InP metal-insulator-semiconductor field-effect transistors,” Appl. Phys. Lett., 46, No. 4, 416–418 (1985).

    ADS  Google Scholar 

  79. L. G. Meiners, A. R. Clawson, and R. Nguyen, “InP metal-semiconductor field-effect transistors with mercury and cadmium gates,” Appl. Phys. Lett., 49, No. 6. 340–341 (1986).

    ADS  Google Scholar 

  80. L. D. Pressman, S. R. Forrest, W. A. Bonner, et al., “Noninvasive analysis of InP surfaces using Hg-InP Schottky barrier diodes,” Appl. Phys. Lett., 41, No. 10, 969–971 (1982).

    ADS  Google Scholar 

  81. C. J. Sa and L. G. Meiners, “Schottky barrier heights of Hg, Cd, and Zn on n-type InP (100),” Appl. Phys. Lett., 48, No. 26, 1796–1798 (1986).

    ADS  Google Scholar 

  82. C. Fan and P. K. L. Yu, “Self-aligned diffusion technique for n-InP JFETs,” Electron. Lett., 23, No. 19, 981–982 (1987).

    Google Scholar 

  83. A. Antreasyan, P. A. Garbinski, V. D. Mattera, et al., “Gigahertz logic based on InP metal-insulator-semiconductor field-effect transistors by vapor phase epitaxy,” IEEE Trans. Electron Dev., ED-34, No. 9, 1897–1901 (1987).

    Google Scholar 

  84. K. P. Pande, M. A. Fathimulla, D. Gutierrez, et al., “Gigahertz logic gates based on InP-MISFETs with minimal drain current drift,” IEEE Electron Dev. Lett., EDL-7, No. 7, 407–409 (1986).

    ADS  Google Scholar 

  85. M. Armand, D. V. Bui, J. Chevrier, et al., “High-power InP MISFETs,” Electron. Lett., 19, No. 12, 433–434 (1983).

    ADS  Google Scholar 

  86. T. Itoh and K. Ohata, “X-band self-aligned gate enhancement-mode InP MISFETs,” IEEE Trans. Electron Dev., ED-30, No. 7, 811–815 (1983).

    ADS  Google Scholar 

  87. M. A. Hasse, V. M. Robbins, N. Tabatabaie, et al., “Subthreshold electron velocity-field characteristics of GaAs and In0.53Ga0.47As,” J. Appl. Phys., 57, No. 6, 2295–2298 (1985).

    ADS  Google Scholar 

  88. T. Pearsall, G. Beuchet, J. P. Hirtz, et al., “Electron and hole mobilities in Ga0.47In0.53As,” Inst. Phys. Conf. Ser., 56, 639 (1981).

    Google Scholar 

  89. T. H. Windhorn, L. W. Cook, and G. E. Stillman, “The electron velocity-field characteristic for n-In0.53Ga0.47As at 300 K,” IEEE Electron Dev. Lett., EDL-3, No. 1, 18–20 (1982).

    Google Scholar 

  90. Y. Takeda, A. Sasaki, Y. Imamura, et al., “Electron mobility and energy gap of In0.53Ga0.47As on InP substrate,” J. Appl. Phys., 47, No. 12, 5405–5408 (1976).

    ADS  Google Scholar 

  91. P. O’Connor, T. P. Pearsall, K. Y. Cheng, et al., “In0.53Ga0.47As FETs with insulator assisted Schottky gates,” IEEE Electron Dev. Lett., EDL-1, No. 3, 64–66 (1982).

    Google Scholar 

  92. L. C. Cheng, A. S. H. Liao, T. Y. Chang, et al., “Submicrometer self-aligned recessed gate InGaAs MISFET exhibiting very high transconductance,” IEEE Electron Dev. Lett., EDL-5, No. 5, 169–171 (1984).

    Google Scholar 

  93. M. Renaud, F. Boher, J. Schneider, et al., “Ga0.47In0.53As depletion mode MISFETs with negligible drain current drift,” Electron. Lett., 24, No. 12, 750–751 (1988).

    Google Scholar 

  94. C. Y. Chen, A. Y. Cho, P. A. Garbinski, et al., “Characteristics of an In0.53Ga0.47As very shallow junction gate structure grown by molecular beam epitaxy,” IEEE Electron Dev. Lett., EDL-3, No. 1, 15–17 (1980).

    Google Scholar 

  95. T. Y. Chang, R. F. Leheny, R. E. Nahory, et al., “Junction field-effect transistor using In0.53Ga0.47As material grown by molecular beam epitaxy,” IEEE Electron Dev. Lett., EDL-3, No. 3, 56–58 (1982).

    Google Scholar 

  96. R. F. Leheny, R. E. Nahory, M. A. Pollack, et al., “An In0.53Ga0.47As junction field-effect transistor,” IEEE Electron Dev. Lett., EDL-1, No. 6, 110–111 (1980).

    Google Scholar 

  97. L. Vescan, J. Selders, H. Krautle, et al., “Be-implanted p-n junctions in In0.53Ga0.47As,” Electron. Lett., 18, No. 12, 533–534 (1982).

    Google Scholar 

  98. D. Lecrosnier, L. Henry, A. LeCorbe, et al., “GaInAs junction FET fully dry etched by metal organic reactive ion etching technique,” Electron. Lett., 23, No. 24, 1254–1255 (1987).

    Google Scholar 

  99. Y. G. Chai and R. Yeats, “In0.53Ga0.47As submicrometer FETs grown by MBE,” IEEE Electron Dev. Lett., EDL-4, No. 7, 252–254 (1983).

    Google Scholar 

  100. Y. G. Chai, C. Yuen, and G. A. Zdasiuk, “Investigation of In0.53Ga0.47As for high-frequency microwave power FETs,” IEEE Trans. Electron Dev., ED-32, No. 5, 972–977 (1985).

    ADS  Google Scholar 

  101. S. Bandy, C. Nishimoto, S. Hyder, et al., “Saturation velocity determination for In0.53Ga0.47As field-effect transistors,” Appl. Phys. Lett., 38, No. 10, 817–819 (1981).

    ADS  Google Scholar 

  102. J. Selders, H. J. Wachs, and H. Jürgensen, “GaInAs junction FET with InP buffer layer prepared by selective ion implantation of Be and rapid thermal annealing,” Electron. Lett., 22, No. 6, 313–315 (1986).

    ADS  Google Scholar 

  103. É. Adomaitis, Z. Dobrobol’skis, and A. Krotkus, “Using picosecond electrical pulses to measure the effects of hot electrons in InSb,” Lit. Fiz. Sb., 25, No. 4, 35–41 (1985).

    Google Scholar 

  104. T. Takahashi, O. Sugiura, I. Watanabe, et al., “SiO2/native-oxide double-gate InSb MOSFETs,” Electron. Lett., 21, No. 12, 545–547 (1985).

    Google Scholar 

  105. A. Matulenis, J. Požela, and A. Reklaitis, “Dynamics of electron heating in a nonparabolic zone in polar semiconductors,” FTP, 10, No. 2, 280–285 (1976).

    Google Scholar 

  106. D. L. Dreifus, R. M. Kolbas, K. A. Harris, et al., “CdTe metal-semiconductor field-effect transistors,” Appl. Phys. Lett., 51, No. 12, 931–933 (1987).

    ADS  Google Scholar 

  107. R. W. Heyes, “High-mobility FET in strained silicon,” IEEE Trans. Electron Dev.y ED-33, No. 6, 863 (1986).

    Google Scholar 

  108. A. Cappy, B. Carnez, R. Fauquembergues, et al., “Comparative potential performance of Si, GaAs, GaInAs, InAs submicrometer-gate FETs,” IEEE Trans. Electron Dev., 27, No. 11, 2158–2160 (1980).

    ADS  Google Scholar 

  109. S. Yoshida, H. Daimon, M. Yamanaka, et al., “Schottky-barrier field-effect transistors of 3C-SiC,” J. Appl. Phys., 60, No. 8, 2989–2991 (1986).

    ADS  Google Scholar 

  110. M. J. Powell, “Material properties controlling the performance of amorphous silicon thin-film transistors,” in: Proc. Materials Res. Society Symp., Vol. 33, M. J. Thompson (ed.), North-Holland, New York (1984), pp. 259–273.

    Google Scholar 

  111. Y. Nara, Y. Kudou, and M. Matsumura, “Application of amorphous-silicon field-effect transistors in three-dimensional integrated circuits,” Jpn. J. Appl. Phys., 22, No. 6, L370–L372 (1983).

    ADS  Google Scholar 

  112. F. Okumura and S. Kaneko, “Amorphous Si:H linear image sensor operated by a-Si:H TFT array,” in: Proc. Materials Res. Society Symp., Vol. 33, M. J. Thompson (ed.), North-Holland, New York (1984), pp. 275–280.

    Google Scholar 

  113. M. Matsumura and Y. Nara, “High-performance amorphous-silicon field-effect transistors,” J. Appl. Phys., 51, No. 12, 6443–6444 (1980).

    ADS  Google Scholar 

  114. M. J. Thompson, N. M. Johnson, M. D. Moyer, et al., “Thin-film transistors on a-Si:H,” IEEE Trans. Electron Dev., ED-29, No. 10, 1643–1646 (1982).

    Google Scholar 

  115. C. Hyun, M. S. Shur, M. Hack, et al., “Above threshold characteristics of amorphous silicon alloy thin-film transistors,” Appl. Phys. Lett., 45, No. 11, 1202–1203 (1984).

    ADS  Google Scholar 

  116. M. Shur and M. Hack, “Physics of amorphous silicon based alloy field-effect transistors,” J. Appl. Phys., 55, No. 10, 3831–3842 (1984).

    ADS  Google Scholar 

  117. K. Y. Chung and G. W. Neudeck, “Analytical modeling of a-Si:H thin-film transistors,” J. Appl. Phys., 62, No. 11, 4617–4624 (1987).

    ADS  Google Scholar 

  118. G. W. Neudeck, H. F. Bare, and K. Y. Chung, “Modeling of ambipolar a-Si:H thin-film transistors,” IEEE Trans. Electron Dev., ED-34, No. 2, 344–349 (1987).

    ADS  Google Scholar 

  119. M. Shur, C. Hyun, and M. Hack, “New high field-effect mobility regimes of amorphous silicon alloy thin-film transistor operation,” J. Appl. Phys., 59, No. 7, 2488–2497 (1986).

    ADS  Google Scholar 

  120. H. Pfleiderer, “Elementary ambipolar field-effect transistor model,” IEEE Trans. Electron Dev., ED-33, No. 1, 145–147 (1986).

    Google Scholar 

  121. H. Pfleiderer, W. Kusian, and B. Bullemer, “An ambipolar amorphous-silicon field-effect transistor,” Siemens Forshungs-Entwicklungaber, 14, No. 3, 114–119 (1985).

    ADS  Google Scholar 

  122. K. Hiranaka, T. Yoshimura, and T. Yamaguchi, “Influence of a-SiNx:H gate insulator on an amorphous silicon thin-film transistor,” J. Appl. Phys., 62, No. 5, 2129–2135 (1987).

    ADS  Google Scholar 

  123. R. E. I. Schropp, J. W. C. Veltkamp, J. Snijder, et al., “On the quality of contacts in a-Si:H staggered electrode thin-film transistors,” IEEE Trans. Electron Dev., ED-32, No. 9, 1757–1760 (1985).

    Google Scholar 

  124. A. R. Hepburn, J. M. Marshall, C. Main, et al., “Metastable defects in amorphous-silicon thin-film transistors,” Phys. Rev. Lett., 56, No. 20, 2215–2218 (1986).

    ADS  Google Scholar 

  125. R. E. I. Schropp and J. F. Verwey, “Instability mechanism in hydrogenated amorphous-silicon thin-film transistors,” Appl. Phys. Lett., 50, No. 4, 185–187 (1987).

    ADS  Google Scholar 

  126. M. J. Powell, C. van Berkel, I. D. French, et al., “Bias dependence of instability mechanism in amorphous silicon thin-film transistors,” Appl. Phys. Lett., 51, No. 16, 1242–1244 (1987).

    ADS  Google Scholar 

  127. U. Yasutaka and M. Masakiyo, “Proposed planar-type amorphous-silicon MOS transistors,” Jpn. J. Appl. Phys., 24, No. 10, 812–814 (1985).

    Google Scholar 

  128. P. Yan, N. N. Lichtin, and D. L. Morel, “Amorphous silicon, germanium, and silicon-germanium alloy thin-film transistor performance and evaluation,” Appl. Phys. Lett., 50, No. 19, 1367–1369 (1987).

    ADS  Google Scholar 

  129. M. Ueda, M. Hirose, and Y. Osaka, “Amorphous silicon static induction transistor,” Jpn. J. Appl Phys., 24, No. 4, 467–471 (1985).

    ADS  Google Scholar 

  130. D. J. Bartelink, “Potential applications of polysilicon as an electronic-device material,” in: Grain Boundaries in Semiconductors, H. J. Leamy, G. E. Puke, and C. H. Seager (eds.), North-Holland (1982), pp. 249-260.

    Google Scholar 

  131. T. Oshima, T. Nogushi, and H. Hayashi, “A super thin film transistor in advanced poly Si film,” Jpn. J. Appl. Phys., 25, No. 4, L291–L293 (1986).

    ADS  Google Scholar 

  132. K. T.-Y. Kung and R. Reif, “Polycrystalline Si thin-film transistors fabricated at ≤ 800° C: Effects of grain size and {100} fiber texture,” J. Appl. Phys., 62, No. 4, 1503–1509 (1987).

    ADS  Google Scholar 

  133. D. B. Meakin, P. A. Coxon, P. Migliorato, et al., “High-performance thin-film transistors from optimized polycrystalline silicon films,” Appl. Phys. Lett., 50, No. 26, 1894–1896 (1987).

    ADS  Google Scholar 

  134. B. Loisel, Y. Chouan, N. Pedrono, et al., “Low-temperature process for high-mobility polysilicon TFTs,” Electron. Lett., 23, No. 6, 288–289 (1987).

    Google Scholar 

  135. T. Serikawa, S. Shirai, A. Okamoto, et al., “A model of current-voltage characteristics in polycrystalline silicon thin-film transistors,” IEEE Trans. Electron Dev., ED-34, No. 2, 321–324 (1987).

    Google Scholar 

  136. J. Levinson, F. R. Shepherd, P. J. Scanlon, et al., “Conductivity behavior in polycrystalline semiconductor thin film transistors,” J. Appl. Phys., 53, No. 2, 1193–1202 (1982).

    ADS  Google Scholar 

  137. J. G. Fossum and A. Oniz-Conde, “Effects of grain boundaries on the channel conductance of SOI MOSFETs,” IEEE Trans. Electron Dev., ED-30, No. 8, 933–940 (1983).

    ADS  Google Scholar 

  138. J.-P. Colinge, H. Morel, and J. P. Chante, “Field-effect in large grain polycrystalline silicon,” IEEE Trans. Electron Dev., ED-30, No. 3, 197–201 (1983).

    Google Scholar 

  139. J. C. Anderson, “Theory of the thin film transistor,” Thin Solid Films, 38, No. 2, 151–161 (1976).

    ADS  Google Scholar 

  140. H. Baudrand, E. Hamadto, and J. L. Amalric, “An experimental and theoretical study of polycrystalline thin film transistors,” Solid-State Electron, 24, No. 12, 1093–1098 (1981).

    ADS  Google Scholar 

  141. D. P. Vu, “Transient effect in thinned silicon-on-insulator devices,” Electron, Lett., 22, No. 8, 412–413 (1986).

    Google Scholar 

  142. K. Throngnumchai, K. Asada, and T. Sugano, “Modeling of 0.1-μm MOSFET on SOI structure using Monte Carlo simulation technique,” IEEE Trans. Electron Dev., ED-33, No. 7, 1005–1011 (1986).

    Google Scholar 

  143. J. P. Colinge, “Reduction of floating substrate effect in thin-film SOI MOSFETs,” Electron. Lett., 22, No. 4, 187–188 (1986).

    Google Scholar 

  144. S. S. Tsao, D. R. Myers, and G. K. Celler, “Gate coupling and floating-body effects in thin-film SOI MOSFETs,” Electron. Lett., 24, No. 4, 238–239 (1988).

    Google Scholar 

  145. J. P. Colinge, “Subthreshold slope of thin-film SOI MOSFETs,” IEEE Electron Dev. Lett., EDL-7, No. 4, 244–246 (1986).

    Google Scholar 

  146. H. Onoda, M. Sasaki, T. Katoh, et al., “Si-gate CMOS devices on a Si/CaF2/Si structure,” IEEE Trans. Electron Dev., ED-34, No. 11, 2280–2285 (1987).

    Google Scholar 

  147. H. Hirai, H. Sekiguchi, S. Miyata, et al., “Tellurium thin-film transistor deposited on polyester film having plasma polymerized films on double-layered gate insulators,” Appl. Phys. Lett., 50, No. 13, 818–820 (1987).

    ADS  Google Scholar 

  148. A. Tsumura, H. Koezuka, and T. Ando, “Macromolecular electronic device: Field-effect transistor with a polythiophene thin film,” Appl. Phys. Lett., 49, No. 18, 1210–1212 (1986).

    ADS  Google Scholar 

  149. D. J. Roulston and F. Hebert, “Optimization of maximum oscillation frequency of a bipolar transistor,” Solid-State Electron., 30, No. 3, 281–282 (1987).

    ADS  Google Scholar 

  150. A. Van der Ziel and T. G. M. Kleinpenning, “High-frequency response of microwave transistors,” Solid-State Electron., 30, No. 7, 771–772 (1987).

    Google Scholar 

  151. H.-M. Rein, H. Stübing, and M. Schröter, “Verification of the integral charge-control relation for high-speed bipolar transistors at high current densities,” IEEE Trans. Electron Dev., ED-32, No. 6, 1070–1076 (1985).

    ADS  Google Scholar 

  152. G. M. Kull, L. W. Nagel, S.-W. Lee, et al., “A unified circuit model for bipolar transistors including quasi-saturation effects,” IEEE Trans. Electron Dev., ED-32, No. 6, 1103–1113 (1985).

    Google Scholar 

  153. R. G. Meyer and R. S. Muller, “Charge-control analysis of the collector-base space-charge-region contribution to bipolar transistor time constant τT,” IEEE Trans. Electron Dev., ED-34, No. 2, 450–452 (1987).

    Google Scholar 

  154. A. Cuthbertson, and P. Ashburn, Int. Electron. Devices Meeting Technical Digest, 1984, p. 749.

    Google Scholar 

  155. T. H. Ning, R. D. Isaac, P. M. Solomon, et al., “Self-aligned bipolar transistors for high-frequency performance and low-power-delay VLSI,” IEEE Trans. Electron Dev., ED-28, No. 9, 10104013 (1981).

    Google Scholar 

  156. T. Sakai, Y. Yamamoto, Y. Kobayashi, et al., “A 3-ns 1-kbit RAM using super self-aligned process technology,” IEEE J. Solid State Circuits, SC-16, No. 5, 424–429 (1981).

    Google Scholar 

  157. B. Soerowirdjo and P. Ashburn, “Effects of surface treatments on the electrical characteristics of bipolar transistors with polysilicon emitters,” Solid-State Electron., 26, No. 5, 495–498 (1983).

    ADS  Google Scholar 

  158. S. S. Tan and A. G. Milnes, “Consideration of the frequency performance potential of GaAs homojunction and heterojunction n-p-n transistors,” IEEE Trans. Electron Dev., ED-30, No. 10, 1289–1294 (1983).

    ADS  Google Scholar 

  159. S.-P. Lee and D. L. Pulfrey, “Modeling the dc performance of GaAs homojunction bipolar transistors,” Solid-State Electron., 29, No. 7, 713–723 (1986).

    ADS  Google Scholar 

  160. T. Ashley, G. Crimes, C. T. Elliott, et al., “Bipolar transistor action in cadmium mercury telluride,” Electron. Lett., 22, No. 11, 611–613 (1986).

    ADS  Google Scholar 

  161. T. Ashley, C. T. Elliott, A. M. White, et al., “Near-ambient-temperature bipolar transistor in cadmium mercury telluride,” Electron. Lett., 23, No. 24, 1280–1281 (1987).

    ADS  Google Scholar 

  162. F. Hebert and D. J. Roulston, “High-frequency performance of non-conventional-geometry bipolar transistors,” Solid-State Electron., 29, No. 12, 1239–1241 (1986).

    ADS  Google Scholar 

  163. R. Schummers, P. Narozny, and H. Beneking, “Strained-layer homojunction GaAs bipolar transistor with enhanced current gain,” Electron. Lett., 22, No. 17, 924–925 (1986).

    Google Scholar 

  164. D. Ueda, H. Takagi, G. Kano, et al., “GaAs lateral bipolar transistor with field-separated carriers,” Electron. Lett., 23, No. 17, 899–900 (1987).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Požela, J. (1993). Homojunction Field-Effect and Bipolar Transistors. In: Physics of High-Speed Transistors. Microdevices. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1242-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1242-8_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1244-2

  • Online ISBN: 978-1-4899-1242-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics