Skip to main content

Maximum Drift Velocity in Semiconductors

  • Chapter
Physics of High-Speed Transistors

Part of the book series: Microdevices ((MDPF))

  • 283 Accesses

Abstract

Charge carriers drift velocity is the most important factor affecting transistor operating speed. In this chapter we will examine the possibilities for achieving the highest drift velocity in semiconductors. The processes involved in scattering the charge carriers and saturating their drift velocity while immersed in strong electric fields under steady-state conditions are described first (Sec. 3.1). We next examine the dynamics of electron gas heating in a semiconductor and drift velocity overshoot during short periods of time (Sec. 3.2) and in short specimens (Sec. 3.3). Finally, we will analyze the ballistic transit of electrons injected at high initial velocity into a semiconductor (Sec. 3.4). The material in this chapter is essential to understanding the physics of transistor operation that will be developed in subsequent chapters and to evaluating possibilities for achieving maximum transistor operating speed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Budd, “Path variable formulation of the hot carrier problems,” Phys. Rev., 158, No. 3, 798–804 (1967).

    Article  ADS  Google Scholar 

  2. P.A. Lebwohl and P.M. Marcus, “Hot electron distribution by direct integration of the Boltzmann equation,” Solid State Commun., 9, 1671–1674 (1971).

    Article  ADS  Google Scholar 

  3. H. D. Rees, “Calculation of distribution functions by exploiting the stability of the steady state,” J. Phys. Chem. Sol., 30, No. 3, 643–655 (1969).

    Article  MathSciNet  ADS  Google Scholar 

  4. W. Fawcett, A. D. Boardman, and S. Swain, “Monte Carlo determination of electron transport properties in gallium arsenide,” J. Phys. Chem. Sol., 31, No. 9, 1963–1990 (1970).

    Article  ADS  Google Scholar 

  5. M. A. Littlejohn, J. R. Hauser, and T. H. Glisson, “Velocity-field characteristics of GaAs with Гc e-Lc e-Xc e conduction-band disordering,” J. Appl. Phys., 48, No. 11, 4587–4590 (1977).

    Google Scholar 

  6. A. Matulionis, J. Požela, and A. Reklaitis, “The dynamics of electron heating,” in: Electrons in Semiconductors, Vol. I, Many-Valley Semiconductors, J. Požela (ed.) [in Russian], Mokslas, Vilnius (1978), pp. 7-58.

    Google Scholar 

  7. J. P. Nougier, J. C. Vaissiere, D. Gasque, et al., “Determination of transient regime of hot carriers in semiconductors using the relaxation time approximations,” J. Appl. Phys., 52, No. 2, 825–832 (1981).

    Article  ADS  Google Scholar 

  8. V. Denis, A. Pauzha, J. Požela, et al., “Resistive sensors and converters for microwave pulse signals,” in: Electrons in Semiconductors, Vol. II, Semiconductor Converters, J. Požela (ed.) [in Russian], Mokslas, Vilnius (1980), pp. 9-72.

    Google Scholar 

  9. C. Jacoboni and L. Reggiani, “Bulk hot-electron properties of cubic semiconductors,” Adv. Phys., 28, No. 4, 493–553 (1979).

    Article  ADS  Google Scholar 

  10. M. Shur, GaAs Devices and Circuits, Plenum Press, New York and London (1987).

    Google Scholar 

  11. C. J. Stanton and W. Wilkins, “Hot-electron noise in two-valley semiconductors: an analytic model,” Phys. Rev. B, 36, No. 3, 1686–1695 (1987).

    Article  ADS  Google Scholar 

  12. M. Meyyappan, J. P. Kreskovsky, and H. L. Grubin, “Numerical simulation of an AlGaAs/GaAs bipolar inversion channel field effect transistor,” Solid-State Electron., 31, No. 6, 1023–1030 (1988).

    Article  ADS  Google Scholar 

  13. H. T. Lam and G. A. Acket, “Comparison of the microwave velocity field characteristics of n-type InP and n-type GaAs,” Electron. Lett., 7, 722–723 (1971).

    Article  Google Scholar 

  14. L. D. Nielsen, “Microwave measurement of electron drift velocity in indium phosphide for electric fields up to 50 kV/cm,” Phys. Lett., 38A, No. 4, 221 (1972).

    ADS  Google Scholar 

  15. Y. Cho, R. Sakamoto, and M. Inoue, “Real space hot electron distributions and transfer effects in heterostructures,” Solid-State Electron., 31, No. 3/4, 325–328 (1988).

    Article  ADS  Google Scholar 

  16. Z. Dobrovolskis, K. Grigoras, and A. Krotkus, “Measurement of the hot-electron conductivity in semiconductors using ultra-fast electric pulses,” Appl. Phys. Lett. A, 48, No. 3, 245–249 (1989).

    Article  ADS  Google Scholar 

  17. A. Yu. Dargis, Measuring Drift Velocity in Semiconductors [in Russian], Institute of Semiconductor Physics, Lithuanian Academy of Sciences, Mokslas, Vilnius (1987).

    Google Scholar 

  18. T. Sugano, T. Ikoma, and E. Takeisi, Introduction to Microelectronics [Russian translation], Mir, Moscow (1988).

    Google Scholar 

  19. C. Canali, M. Martini, G. Ottaviani, et al., “Time of flight measurement of the differential negative mobility in CdTe,” Phys. Lett., 33A, No. 4, 241–242 (1970).

    ADS  Google Scholar 

  20. A. Dargis, S. Zhilenis, A. Matulionis, et al., “Volt-ampere characteristics of graded bandgap AlxGa1-x As crystals,” Lit. Fiz. Sb., 17, No. 4, 493–500 (1977) [English translation: Sov. Phys. Collect., 17, No. 4, 63-67 (1977)].

    Google Scholar 

  21. J. Požela and A. Reklaitis, “Electron transport properties in GaAs at high electric fields” Solid-State Electron., 23, No. 9, 927–933 (1980).

    Article  ADS  Google Scholar 

  22. L. Reggiani, “General theory,” in: Hot-Electron Transport in Semiconductors. Topics in Applied Physics, Vol. 58, L. Reggiani (ed.), Springer-Verlag, Berlin-Heidelberg-New York-Tokyo (1985), pp. 7–86.

    Chapter  Google Scholar 

  23. E. Constant, “Non-steady state carrier transport in semiconductors in perspective with submicrometer devices,” in: Hot-Electron Transport in Semiconductors. Topics in Applied Physics, Vol. 58, L. Reggiani (ed.), Springer-Verlag, Berlin-Heidelberg-New York-Tokyo (1985), pp. 227–261.

    Chapter  Google Scholar 

  24. J. Požhela, Plasma and Current Instabilities in Semiconductors, Pergamon Press, Oxford (1981).

    Google Scholar 

  25. A. Matulionis, J. Požela, and A. Reklaitis, “Electron runaway time during scattering by polar optical phonons,” FTP, 8, No. 9, 1830–1833 (1974).

    Google Scholar 

  26. A. Matulionis, J. Požela, and A. Reklaitis, “Modeling the dynamics of electron runaway by means of a multiparticle Monte Carlo method,” FTP, 9, No. 1, 178–180 (1975).

    Google Scholar 

  27. A. Matulionis and R. Milyushite, “The length of the passive near-cathode space in GaAs and InP,” Lit. Fiz. Sb., 2, No. 3, 293–297 (1986) [English translation: Sov. Phys. Collect., 26, No. 3, 28-31 (1986)].

    Google Scholar 

  28. J. G. Ruch, “Electron dynamics in a short channel field-effect transistor,” IEEE Trans. Electron Dev., ED-19, No. 5, 652–654 (1972).

    Article  Google Scholar 

  29. A. Matulionis, J. Požela, and A. Reklaitis, “Monte Carlo calculations of hot electron transient behavior in CdTe and GaAs,” Phys. Stat. Sol. (a), 35, No. 1, 43–48 (1976).

    Article  ADS  Google Scholar 

  30. H. D. Rees, “Time response of the high-field distribution function in GaAs,” IBM J. Res. Dev., 13, No. 5, 537–542 (1969).

    Article  MathSciNet  Google Scholar 

  31. A. Matulionis, J. Požela, and A. Reklaitis, “Drift velocity oscillations in GaAs at 77 K,” Phys. Stat. Sol. (a), 31, No. 1, 83–87 (1975).

    Article  ADS  Google Scholar 

  32. P. A. Rolland, E. Constant, G. Salmer, et al., “Comparative frequency behavior of GaAs, InP, and GaInAs transferred electron device-derivation of a simple comparative criterion,” IEEE Trans. Electron Dev., ED-28, No. 3, 341–343 (1981).

    Article  ADS  Google Scholar 

  33. A. Ghis, E. Constant, and B. Boittiaux, “Ballistic and overshoot electron transport in bulk semiconductors and in submicronic devices,” J. Appl. Phys., 54, No. 1, 214–221 (1983).

    Article  ADS  Google Scholar 

  34. M. S. Shur and L. F. Eastman, “GaAs n +-p-n + ballistic structure,” Electron. Lett., 16, No. 13, 522–523 (1980).

    Article  Google Scholar 

  35. C. Hamaguchi, “Hot electron transport in very short semiconductors,” Physica, 134B, 87–96 (1985).

    Google Scholar 

  36. T. Mori, C. Hamaguchi, A. Shibatomi, et al., “Hot electron effect in short n +-n-n + GaAs,” Jpn. J. Appl. Phys., 23, No. 2, 212–215 (1984).

    Article  ADS  Google Scholar 

  37. K. Kibickas, J. Parseliũnas, and S. Vasiliauskas, “Transient hot electron phenomena in GaAs n +-n-n + structures at 300 K,” Phys. Stat. Sol. (a), 102, No. 1, K99–K10 (1987).

    Article  ADS  Google Scholar 

  38. F. Capasso, “Compositionally graded semiconductors and their device applicationy,” Ann. Rev. Mater. Sci., 16, 263–291 (1986).

    Article  ADS  Google Scholar 

  39. M. S. Lundstrom, S. Datta, S. Bandyopadhyay, et al., “Monte Carlo studies of repeated overshoot devices,” in: Physics and Modeling of Heterostructure Semiconductor Devices. Annual Report: June 1, 1985–July 31, 1986. Purdue University School of Electrical Engineering, Technical Report: TR-EE 86-31, Chapter 2, pp. 10-35.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Požela, J. (1993). Maximum Drift Velocity in Semiconductors. In: Physics of High-Speed Transistors. Microdevices. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1242-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1242-8_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1244-2

  • Online ISBN: 978-1-4899-1242-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics