Skip to main content

High-Speed Devices and Integrated Circuits

  • Chapter
Physics of High-Speed Transistors

Part of the book series: Microdevices ((MDPF))

  • 267 Accesses

Abstract

In this chapter we will present the maximum speeds attained experimentally for the transistors that have been described. Only those results which represent the ultimate for a given transistor type having an operating speed greater than 100 psec or 10 GHz have been chosen. The maximum operating speed that can be achieved is discussed in Sec. 10.1 for all of the major transistor types. Logic gates and integrated circuits have been built upon transistors fabricated from A3B5 compounds and have operating speeds that are significantly higher than their silicon analogues. A few examples of these types of ICs will be examined in Sec. 10.2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. R. Decker, “GaAs integrated circuits for microwave applications,” in: Gallium Arsenide in Microelectronics, N. G. Einspruch and W. R. Wisseman (eds.), Academic Press, New York (1985).

    Google Scholar 

  2. A. J. Holden, D. R. Daniel, I. Davies, et al., “Gallium arsenide traveling-wave field-effect transistors,” IEEE Trans. Electron. Dev., ED-32, No. 1, 61–66 (1985).

    ADS  Google Scholar 

  3. P. M. Solomon, “A comparison of semiconductor devices for high-speed logic circuits,” Proc. IEEE, 70, No. 5, 489–509 (1982).

    Google Scholar 

  4. P. Grayling and K. Crumm, “The prospects for using digital GaAs ICs,” in: Gallium Arsenide in Microelectronics, N. G. Einspruch and W. R. Wisseman (eds.), Academic Press, New York (1985).

    Google Scholar 

  5. M. Abe, T. Mimura, K. Nishiushi, and N. Yokoyama, “GaAs VLSI technology for high-speed computers,” in: Gallium Arsenide in Microelectronics, N. G. Einspruch and W. R. Wisseman, (eds.), Academic Press, New York (1985).

    Google Scholar 

  6. V. B. Savin and V. G. Kuz’mina, “Vacuum electronic devices for microwave applications: Development and application,” Zarubezhnaya Radioélektronika, No. 3, 57-80 (1984).

    Google Scholar 

  7. R. A. Höpfel and G. Weimann, “Electron heating and free-carrier absorption in GaAs/AlGaAs single heterostructures,” Appl. Phys. Lett., 46, No. 3, 291–293 (1985).

    ADS  Google Scholar 

  8. E. Gornik, “Magnetically tunable far infrared emitters and detectors,” in: Proc. Intern. Conf. Application of High Magnetic Fields in Semiconductor Physics, Grenoble, France (1982), pp. 321-331.

    Google Scholar 

  9. J. K. Požela, “A collision-free shift in the distribution function for a charge carrier in an electric field and radiative transitions in semiconductors,” FTP, 18, No. 8, 1467–1471 (1984).

    Google Scholar 

  10. J. Požela, “Principles of population inversion and realization of stimulated far-IR radiation emission,” Phys. Scripta, T23, 223–226 (1988).

    ADS  Google Scholar 

  11. A. A. Andronov, V. A. Kozlov, L. S. Mazov, and V. N. Shastin, “Amplifying far-infrared radiation in germanium during a “hot” holes population inversion,” Pis’ma v ZhTF, 30, No. 9, 585–589 (1979).

    Google Scholar 

  12. “Hot electrons in semiconductors: streaming and anisotropic distributions in transverse fields,” in: A Collection of Scientific Articles, A. A. Andronov and J. K. Požela, (eds.) [in Russian], Institute of Applied Physics of the Academy of Sciences of the USSR, Gor’kii (1983).

    Google Scholar 

  13. A. A. Andronov, “Population inversion and far-infrared emission of hot electrons in semiconductors,” in: Infrared and Millimeter Waves, K. Button (ed.), Vol. 16 (1986), pp. 150–185.

    Google Scholar 

  14. A. A. Andronov (ed.), Hot-Hole Submillimeter Lasers in Semiconductors [in Russian], Institute of Applied Physics of the Academy of Sciences of the USSR, Gor’kii (1986).

    Google Scholar 

  15. A. A. Andronov (ed.), “Semiconductor masers at cyclotron resonance,” in: A Collection of Scientific Works [in Russian], Institute of Applied Physics of the Academy of Sciences of the USSR, Gor’kii (1986).

    Google Scholar 

  16. E. V. Starikov and P. N. Shiktorov, “The efficiency of solid-state sources of radiation based on bulk effects in p-type germanium,” FTP, 20, No. 6, 1076–1082 (1986).

    Google Scholar 

  17. E. M. Gershenzon, A. P. Mel’nikov, R. I. Rabinovich et al., “The possibilities of producing an inversion function for the distribution function of free carriers in semiconductors during capture at shallow neutral impurities,” FTP, 17, No. 3, 499–501 (1983).

    Google Scholar 

  18. R. Höpfel, G. Lindemann, and E. Gornik, “Cyclotron and plasmon emission from two-dimensional electronics in GaAs,” Surface Science, 113, No. 1, 118–123 (1982).

    Google Scholar 

  19. V. Ambrazyvichene, R. Brazis, and I. Parshyalyunas, “Amplification of an electromagnetic microwave signal during nonlinear excitation of surface magnetoplasma polaritons in semiconductors,” FTP, 18, No. 4, 741–743 (1984).

    Google Scholar 

  20. J. Požhela, Plasma and Current Instabilities in Semiconductors, Pergamon Press, Oxford (1981).

    Google Scholar 

  21. R. D. Larrabee and W. A. Hicinbothem, “Observation of microwave emission from indium antimonide,” in: Plasma Effects in Solids, Paris, 1964, Dunod, Paris (1965) p. 181.

    Google Scholar 

  22. B. Ancker-Johnson, “Plasmas in semiconductors and semimetals,” in: Semiconductors and Semimetals, Vol. 1, Academic Press, New York (1966), pp. 379–481.

    Google Scholar 

  23. M. Glicksman, “Summary of microwave emission from InSb: gross features and possible explanation,” IBM J. Res. Dev., 13, No. 5, 626–630 (1969).

    Google Scholar 

  24. R. N. Wallace and A. Bers, “Microwave emission from n-InSb at 77 K,” in: Proc. 10th Int. Conf. Phys. Semicond., Cambridge, MA (1970) p. 125.

    Google Scholar 

  25. M. E. Levinshtein, J. K. Požela, and M. S. Shur, The Gunn Effect [in Russian], Sovetskoe Radio, Moscow (1975).

    Google Scholar 

  26. A. S. Tager and V. M. Val’d-Perlov, Avalanche Diodes and Their Application in Microwave Technique [in Russian], Sovetskoe Radio, Moscow (1968).

    Google Scholar 

  27. S. M. Sze, Physics of Semiconductor Devices, 2nd Edition, Wiley-Interscience, New York (1981).

    Google Scholar 

  28. A. Matulenis, J. Požela, and A. Reklaitis, “The dynamics of electron heating,” in: Electrons in Semiconductors, Vol. 1, Many-Valley Semiconductors [in Russian], J. K. Požela (ed.), Mokslas, Vilnius (1978) pp. 7–58.

    Google Scholar 

  29. A. Matulenis, J. Požela, and A. Reklaitis, “Electron runaway time during transfer by polar optical phonons,” FTP, 8, No. 9, 1830–1833 (1974).

    Google Scholar 

  30. A. Matulenis and R. Milyushite, “The length of the passive subcathode space in GaAs and InP,” Lit. Fiz. Sb., XXVI, No. 3, 293–297 (1986) [English translation: Sov. Phys. Collection, 26, No. 3, 28-31 (1981)].

    Google Scholar 

  31. R. Raguotis and A. Reklaitis, “Dynamic response of electrons in GaAs in a high electric field,” Phys. St. Sol. (a), 62, No. 1, 339–405 (1980).

    Google Scholar 

  32. Z. Dobrovolskis, A. Krotkus, J. Požela, et al., “Current-voltage characteristics of InSb at room temperature and high hydrostatic pressure,” Phys. St. Sol. (a), 59, No. 2, 689–696 (1980).

    ADS  Google Scholar 

  33. A. Krotkus, T. Lideikis, A. Plytnikas, et al., “Hot electron conduction of PbTe and Pbl-xSnxTe,” Solid State Electron., 26, No. 6, 605–609 (1983).

    ADS  Google Scholar 

  34. R. Asauskas, V. Balynax, Z. Dobrovolskis, et al., “Electron transfer effect in intrinsic tellurium single crystals,” J. Phys., 42, suppl. No. 10, C7-329-C7–334 (1981).

    Google Scholar 

  35. A. S. Tager, “Prospective trends in semiconductor electronics for microwave applications,” Lit. Fiz. Sb., XXI, No. 4, 23–44 (1981) [English translation: Sov. Phys. Collection, 21, No. 4, 15-30 (1986)].

    Google Scholar 

  36. R. Mickevicius and A. Reklaitis, “Impact-ionized electron-hole plasma instability in GaAs,” Int. J. Infrared Millimeter Waves,” 6, No. 3, 235–248 (1985).

    ADS  Google Scholar 

  37. R. Mickevicius and A. Reklaitis, “Electron transient response and impact-ionized plasma instability in GaAs at very high electric fields,” Solid State Commun., 28, No. 8, 799–805 (1985).

    Google Scholar 

  38. V. V. Vladimirov, P. M. Golovinsky, and V. N. Gorshkov, “Plasma self-oscillations in semiconductors with submillimeter frequency range,” Solid State Commun., 34, No. 7, 555–557 (1980).

    ADS  Google Scholar 

  39. L. E. Subachyus, K. Yu. Yarashyunas, and Yu. Yu. Vaitkus, “Photo-induced high frequency current oscillations in the millimeter wave band,” Lit. Fiz. Sb., XXV, No. 4, 42–46 (1985) [English translation: Sov. Phys. Collection, 25, No. 4, 27-29 (1985)].

    Google Scholar 

  40. H. Q. Tsegn and B. Kim, “110 GHz GaAs FET oscillator,” Electron. Lett., 21, No. 5, 178–179 (1985).

    ADS  Google Scholar 

  41. R. M. Nagarajan, J. M. VanHove, S. D. Rask, et al., “Design and fabrication of 0.25 μm MESFETs with parallel and 7r-gate structures,” IEEE Trans. Electron. Dev., 36, No. 1, 142–145 (1989).

    ADS  Google Scholar 

  42. R. A. Sadler and L. F. Eastman, “High-speed logic at 300 K with self-aligned submicrometer-gate GaAs MESFETs,” IEEE Electron. Dev. Lett., EDL-4, No. 7, 215–217 (1983).

    ADS  Google Scholar 

  43. D. H. Evans, “High-efficiency Ka-band MESFET oscillators,” Electron. Lett., 21, No. 7, 254–255 (1988).

    ADS  Google Scholar 

  44. M. B. Das, “Millimeter-wave performance of ultrasubmicrometer-gate field-effect transistors: a comparison of MODFET, MESFET, and PBT structures,” IEEE Trans. Electron. Dev., ED-34, No. 7, 1429–1440 (1987).

    ADS  Google Scholar 

  45. G. Bernstein and D. K. Ferry, “Velocity overshoot in ultra-short-gate-length GaAs MESFETs,” IEEE Trans. Electron. Dev., 35, No. 7, 887–892 (1988).

    ADS  Google Scholar 

  46. A. Antreasyan, P. A. Garbinski, V. D. Mattera, et al., “Gigahertz logic based on InP metal-insulator-semiconductor field-effect transistors by vapor-phase epitaxy,” IEEE Trans. Electron. Dev., ED-34, No. 9, 1897–1901 (1987).

    Google Scholar 

  47. J. S. Barrera and R. J. Archer, “InP Schottky-gate field-effect transistors,” IEEE Trans. Electron. Dev., ED-22, No. 11, 1023–1030 (1975).

    ADS  Google Scholar 

  48. A. Antreasyan, P. A. Garbinski, V. D. Mattera, et al., “High-speed operation of InP metal-insulator-semiconductor field-effect transistors grown by chloride vapor phase epitaxy,” Appl. Phys. Lett., 51, No. 14, 1097–1099 (1987).

    ADS  Google Scholar 

  49. J. M. Golio and J. R. J. Golio, “Projected frequency limits of GaAs MESFETs,” IEEE Trans. Microwave Theory Tech., 39, No. 1, 142–146 (1991).

    ADS  Google Scholar 

  50. N. J. Shah, S. S. Pei, Ch. W. Tu, et al., “Gate-length dependence of the speed of SSI circuits using submicrometer selectively doped heterostructure transistor technology,” IEEE Trans. Electron. Dev., ED-33, No. 5, 543–547 (1986).

    ADS  Google Scholar 

  51. S. Fujita, M. Hirano, and T. Mizutani, “Small-signal characteristics of n +-Ge gate AlGaAs/GaAs MISFETs,” IEEE Electron. Dev. Lett., 9, No. 10, 518–520 (1988).

    ADS  Google Scholar 

  52. C. P. Lee, D. L. Miller, D. Hou, et al., “Ultra high speed integrated circuits using GaAs/AlGaAs high electron mobility transistors,” IEEE Trans. Electron. Dev., ED-30, No. 11, 1569 (1983).

    Google Scholar 

  53. U. R. Iversen, “Gallium arsenide transistors having ultimate operating speed,” Élektronika, No. 10, 20-22 (1985).

    Google Scholar 

  54. A. N. Lepore, H. M. Levy, R. C. Tiberio, et al., “0.1 μm gate length MODFETs with unity current gain cutoff frequency above 110 GHz,” Electron. Lett., 24, No. 6, 364–366 (1988).

    Google Scholar 

  55. M. H. Weiler and Y. Ayasli, “DC and microwave models for AlxGal-xAs/GaAs high electron mobility transistors,” IEEE Trans. Electron. Dev., ED-31, No. 12, 1854–1864 (1984).

    ADS  Google Scholar 

  56. H. D. Shih, B. Kim, K. Bradshaw, et al., “High-performance In0.08Ga0.91As MESFETs on GaAs (100) substrates,” IEEE Trans. Electron. Dev. Lett., 9, No. 11, 604–606 (1988).

    ADS  Google Scholar 

  57. J. Seiders, H. J. Wachs, and H. Jurgensen, “GaInAs junction FET with InP buffer layer prepared by selective ion implantation of Be and rapid thermal annealing,” Electron. Lett., 22, No. 6, 313–315 (1986).

    ADS  Google Scholar 

  58. A. Fathimulla, J. Abrahams, T. Loughran, et al., “High-performance InAlAs/InGaAs HEMTs and MESFETs,” IEEE Electron. Dev. Lett., 9, No. 7, 328–330 (1988).

    ADS  Google Scholar 

  59. B. Kim, R. J. Matyi, M. Wurtele, et al., “AlGaAs/InGaAs/GaAs quantum-well power MISFET at millimeter-wave frequencies,” IEEE Electron. Dev. Lett., 9, No. 11, 610–612 (1988).

    ADS  Google Scholar 

  60. Y. G. Chai, C. Yuen, and G. A. Zdasiuk, “Investigation of In0.53Ga0.47As for high-frequency microwave power FETs,” IEEE Trans. Electron. Dev., ED-32, No. 5, 972–977 (1985).

    ADS  Google Scholar 

  61. U. K. Mishra, A. S. Brown, S. E. Rosenbaum, et al., “Microwave performance of AlInAs-GaInAs HEMTs with 0.2 and 0.1 μm gate length,” IEEE Electron. Dev. Lett., 9, No. 12, 647–649 (1988).

    ADS  Google Scholar 

  62. U. K. Mishra, J. F. Jensen, A. S. Brown, et al., “Ultra-high-speed digital circuit performance in 0.2 μm gate length AlInAs/GaInAs HEMT technology,” IEEE Electron. Dev. Lett., 9, No. 9, 482–484 (1988).

    ADS  Google Scholar 

  63. J. B. Kuang, P. J. Tasker, G. W. Wang, et al., “Kink effect in submicrometer-gate MBE-grown InAlAs/InGaAs/InAlAs heterojunction MESFETs,” IEEE Electron. Dev. Lett., 9, No. 12, 630–632 (1988).

    ADS  Google Scholar 

  64. C. K. Peng, M. I. Aksun, A. A. Ketterson, et al., “Microwave performance of InAlAs/InGaAs/InP MODFETs,” IEEE Electron. Dev. Lett., EDL-8, No. 1, 24–26 (1987).

    ADS  Google Scholar 

  65. J. A. Del Alamo and T. Mizutani, “Bias dependence of f T and f max in an In0.52Al0.48As/n +-In0.53Ga0.47As MISFET,” IEEE Electron. Dev. Lett., 9, No. 12, 654–656 (1988).

    ADS  Google Scholar 

  66. L. D. Nguyen, D. Radulescu, P. J. Tasker, et al., “0.2 μm gate-length atomic-planar doped pseudomorphic Al0.3Ga0.7As/In0.25Ga0.75As MODFETs with f T over 120 GHz,” IEEE Electron. Dev. Lett., 9, No. 8, 374–376 (1988).

    ADS  Google Scholar 

  67. N. Moll, M. R. Hueschen, and A. Fischer-Colbrie, “Pulse-doped AlGaAs/InGaAs pseudomorphic MODFETs,” IEEE Trans. Electron. Dev., 35, No. 7, 879–886 (1988).

    ADS  Google Scholar 

  68. K. Nishii, T. Matsuno, O. Ishikawa, et al., “Novel high-performance N-AlGaAs/InGaAs/N-AlGaAs pseudomorphic double-heterojunction modulation-doped FETs,” Jpn. J. Appl. Phys., 27, No. 11, L2216–L2218 (1988).

    ADS  Google Scholar 

  69. T. Henderson, M. I. Aksun, C. K. Peng, et al., “Microwave performance of a quarter-micrometer gate low-noise pseudomorphic InGaAs/AlGaAs modulation-doped field-effect transistor,” IEEE Electron. Dev. Lett., EDL-7, No. 12, 649–651 (1986).

    ADS  Google Scholar 

  70. A. A. Ketterson, W. T. Masselink, J. S. Gedymin, et al., “Characterization of InGaAs/AlGaAs pseudomorphic modulation-doped field-effect transistors,” IEEE Trans. Electron. Dev., ED-33, No. 5, 564–571 (1986).

    ADS  Google Scholar 

  71. T. Henderson, J. Klem, C. K. Peng, et al., “DC and microwave characteristics of a high current double interface GaAs/InGaAs/AlGaAs pseudomorphic modulation-doped field-effect transistor,” Appl. Phys. Lett., 48, No. 16, 1080–1082 (1986).

    ADS  Google Scholar 

  72. A. A. Ketterson and H. Morkoç, “GaAs/AlGaAS and InGaAs/AlGaAs MODFET inverter simulations,” IEEE Trans. Electron. Dev., ED-33, No. 11, 1626–1634 (1986).

    ADS  Google Scholar 

  73. N. Hayama, M. Madihian, A. Okamoto, et al., “Fully self-aligned AlGaAs/GaAs heterojunction bipolar transistors for high-speed integrated-circuits application,” IEEE Trans. Electron. Dev., 36, No. 11, 1771–1777 (1988).

    ADS  Google Scholar 

  74. K. Morizuka, R. Katoh, K. Tsuda, et al., “Electron space-charge effects on high-frequency performance of AlGaAs/GaAs HBTs under high-current density operation,” IEEE Electron. Dev. Lett., 9, No. 11, 570–572 (1988).

    ADS  Google Scholar 

  75. T. Ishibashi and Y. Yamauchi, “A possible near-ballistic collection in an AlGaAs/GaAs HBT with a modified collector structure,” IEEE Trans. Electron. Dev., 35, No. 4, 401–404 (1988).

    ADS  Google Scholar 

  76. K. Nagata, O. Nakajima, Y. Yamauchi, et al., “Self-aligned AlGaAs/GaAs HBT with low emitter resistance utilizing InGaAs cap layer,” IEEE Trans. Electron. Dev., ED-35, No. 1, 2–7 (1988).

    ADS  Google Scholar 

  77. P. M. Asbeck, M. F. Chang, K. C. Wang, et al., “Heterojunction bipolar transistors for microwave and millimeter-wave integrated circuits,” IEEE Trans. Microwave Theory and Techniques, MTT-35, No. 12, 1462–1470 (1987).

    ADS  Google Scholar 

  78. M. F. Chang, P. M. Asbeck, K. C. Wang, et al., “AlGaAs/GaAs heteroj unction bipolar transistor circuits with improved high-speed performance,” Electron. Lett., 22, No. 22, 1173–1174 (1986).

    Google Scholar 

  79. M. Azuma, “Heteroj unction devices — heteroj unction bipolar transistors,” JST Reports, 2, No. 1, 81–85 (1986).

    Google Scholar 

  80. L. G. Shantharama, H. Schumacher, J. R. Hayes, et al., “Fully self-aligned microwave InP/GaInAs single heteroj unction bipolar transistors,” Electron. Lett., 25, No. 2, 127–128 (1989).

    ADS  Google Scholar 

  81. H. Schumacher, L. G. Shantharama, J. R. Hayes, et al., “High-speed self-aligned InP/GaInAs double heterostructure bipolar transistor with high current-driving capability,” Electron. Lett., 24, No. 20, 1293–1294 (1988).

    Google Scholar 

  82. S. Tanaka, A. Furukawa, T. Baba, et al., “Self-aligned AlInAs/GaInAs HBTs for digital IC applications,” Electron. Lett., 24, No. 14, 872–873 (1988).

    ADS  Google Scholar 

  83. H. Fukano, Y. Kawamura, and Y. Takanashi, “High-speed InAlAs/GaInAs heteroj unction bipolar transistors,” IEEE Electron. Dev. Lett., 9, No. 6, 312–314 (1988).

    ADS  Google Scholar 

  84. D. Ankri, W. J. Schaff, P. Smith, et al., “High-speed GaAlAs-GaAs heterojunction bipolar transistors with near-ballistic operation,” Electron. Lett., 19, No. 4, 147–149 (1983).

    ADS  Google Scholar 

  85. S. Krishnamurthy, A. Sher, and A. B. Chen, “Materials choice for ballistic transport: Group velocities and mean free paths calculated from realistic band structures,” Appl. Phys. Lett., 52, No. 6, 468–470 (1988).

    ADS  Google Scholar 

  86. S. Luryi and A. Kastalsky, “Hot electron transport in heterostructure devices,” Physica, 134B, 453–465 (1985).

    Google Scholar 

  87. A. Kastalsky, J. H. Abeles, R. Bhat, et al., “High-frequency amplification and generation in charge injection devices,” Appl. Phys. Lett., 48, No. 1, 71–73 (1986).

    ADS  Google Scholar 

  88. J. Nishizawa, “Recent progress and potential of SIT,” in: Proc. 11th Intern. Conf. (1979) on Solid State Devices, Tokyo, 1979; Jpn. J. Appl. Phys., 19, suppl. 19-1, 3-11 (1980).

    Google Scholar 

  89. N. P. Economou, “Developing a technology base for the advanced devices and circuits,” Proc. IEEE, 71, No. 5, 601–611 (1983).

    ADS  Google Scholar 

  90. C. O. Bozler and G. D. Alley, “Permeable-base transistors and their application in logic circuits,” Proc. IEEE, 70, No. 1, 46–52 (1982).

    ADS  Google Scholar 

  91. K. Motoya and J. Nishizawa, “TUNNETT,” Int. J. Infrared Millimeter Waves, 6, No. 7, 483–495 (1985).

    ADS  Google Scholar 

  92. E. R. Brown, T. C. L. G. Sollner, W. D. Goodhue, et al., “Fundamental oscillations up to 200 GHz in a resonant-tunneling diode,” in: Device Research Conference, Santa Barbara, USA, 1987.

    Google Scholar 

  93. T. C. L. G. Sollner, P. E. Tannenwald, D. D. Peck, et al., “Quantum well oscillators,” Appl. Phys. Lett., 45, No. 12, 1319–1321 (1984).

    ADS  Google Scholar 

  94. T. C. L. G. Sollner, W. D. Goodhue, P. E. Tannenwald, et al., “Resonant tunneling through quantum wells at frequencies up to 2.5 THz,” Appl. Phys. Lett., 43, No. 7, 588–590 (1983).

    ADS  Google Scholar 

  95. S. Collins, D. Lowe, and J. R. Barker, “A dynamic analysis of resonant tunneling,” J. Phys. C: Solid State Phys., 20, 6233–6243 (1987).

    ADS  Google Scholar 

  96. S. Muto, N. Yokoyama, T. Inata, et al., “Resonant-tunneling hot electron transistors,” in: Proceedings of 19th Int. Conf. Phys. Semicond., Warsaw, Poland 15-19 August 1988, pp. 1391-1398.

    Google Scholar 

  97. M. S. Lundstrom, S. Datta, S. Bandyopadhyay, et al., “The Aharonov-Bohm effect in semiconductors,” in: Physics and Modeling of Heterostructure Semiconductor Devices, Annual Report; June 1, 1985-July 31, 1986. Purdue University School of Electrical Engineering Technical Report: TR-EE 86-31, Ch. 7, pp. 157-168.

    Google Scholar 

  98. H. Morkoc, “Modulation-doped FETs providing gain at 250 GHz and oscillating at frequencies well above, extend the horizons of high performance circuits, from signal processing to space,” Circuits and Devices, 15-20, November 1991.

    Google Scholar 

  99. L. F. Eastman, “Progress in high-frequency heterojunction field-effect transistors,” in: Proc. 20th European Solid State Device Research Conference (ESSDERC), Nottingham, England (1990), pp. 619-624.

    Google Scholar 

  100. L. D. Nguyen, P. J. Tasker, D. C. Radulescu, and L. F. Eastman, “Characterization of ultrahigh-speed pseudomorphic AlGaAs/InGaAs (on GaAs) MODFETs,” IEEE Trans. Electron. Dev., 36, No. 10, 2243–2248 (1989).

    ADS  Google Scholar 

  101. S. Kuroda, N. Harada, S. Sasa, et al., “Selectively dry-etched n +-GaAs/iV-InAlAs/InGaAs HEMTs for LSI,” IEEE Electron. Dev. Lett., 11, No. 5, 230–232 (1990).

    ADS  Google Scholar 

  102. G. W. Wang and M. Feng, “Quarter-micrometer gate ion-implanted GaAs MESFETs with an f T of 126 GHz,” IEEE Electron. Dev. Lett., 10, No. 8, 386–388 (1989).

    ADS  Google Scholar 

  103. T. Enoki, S. Sugitani, and Y. Yamane, “Characteristics including electron velocity overshoot for 0.1-μm gate-length GaAs SAINT MESFETs,” IEEE Trans. Electron. Dev., 37, No. 4, 935–941 (1990).

    ADS  Google Scholar 

  104. L. Lester, R. Tiberio, E. Wolf, et al., in: Froc. IEDM, 1988, pp. 172-175.

    Google Scholar 

  105. Y.-K. Chen, R. N. Nottenburg, M. B. Panish, et al., “Subpicosecond InP/InGaAs heterostructure bipolar transistors,” IEEE Electron. Dev. Lett., 10, No. 6, 267–269 (1989).

    ADS  Google Scholar 

  106. B. Jalali, R. N. Nottenburg, Y.-K. Chen, et al., “High-frequency submicrometer Al0.48In0.52As/Al0.53Ga0.47As heterostructure bipolar transistors,” IEEE Electron. Dev. Lett., 10, No. 8, 391–393 (1989).

    ADS  Google Scholar 

  107. J.-I. Nishizawa, N. Takeda, S. Suzuki, et al., “U-grooved SIT CMOS technology with 3 fJ and 49 ps (7 mW, 350 fJ) operation,” IEEE Trans. Electron. Dev., 37, No. 8, 1877–1883 (1990).

    ADS  Google Scholar 

  108. P. C. Chao, A. J. Tessmer, K. H. G. Duh, et al., “W-band low-noise InAlAs/InGaAs lattice-matched HEMTs,” IEEE Electron. Dev. Lett., 11, No. 1, 59–62 (1990).

    ADS  Google Scholar 

  109. F. Capasso and S. Datta, “Quantum electron devices,” Physics Today, 43, No. 2, 74–82 (1990).

    Google Scholar 

  110. T. C. L. G. Sollner, W. D. Goodhue, P. E. Tannenwald, et al., “Resonant tunneling through quantum wells at frequencies up to 2.5 THz,” Appl. Phys. Lett., 43, No. 6, 588–590 (1983).

    ADS  Google Scholar 

  111. J. F. Whitaker, G. A. Mourou, T. C. L. G. Sollner, et al., “Picosecond switching time measurement of a resonant tunneling diode,” Appl. Phys. Lett., 53, No. 5, 385–387 (1989).

    ADS  Google Scholar 

  112. F. Capasso, S. Sen, F. Beltram, et al., “Quantum functional devices: Resonant-tunneling transistors, circuits with reduced complexity, and multiple-valued logic,” IEEE Trans. Electron. Dev., 36, No. 10, 2065–2081 (1989).

    ADS  Google Scholar 

  113. A. C. Seabangh, W. R. Frensley, J. N. Randall, et al., “Pseudomorphic bipolar quantum resonant-tunneling transistor,” IEEE Trans. Electron. Dev., 36, No. 10, 2328–2366 (1989).

    ADS  Google Scholar 

  114. B. Pödör and I. Mojzes, “Semiconductor quantum effect devices,” Presented at the Symposium on Electronics Technology, Budapest, 17-23 September, 1990.

    Google Scholar 

  115. Y.-K. Chen, H. Temkin, T. Tanbun-Ek, et al., “High-transconductance insulating-gate InP/InGaAs buried p-buffer DH-MODFETs grown by MOVPE,” IEEE Electron. Dev. Lett., 10, No. 4, 162–164 (1989).

    ADS  Google Scholar 

  116. U. K. Mishra, A. S. Brown, M. J. Delaney, et al., “The AlInAs/GaInAs HEMT for microwave and millimeter-wave applications,” IEEE Trans. Microwave Theory and Techniques, 37, No. 9, 1279–1285 (1989).

    ADS  Google Scholar 

  117. M. D. Feuer, D. M. Tennant, J. M. Kuo, et al., “Gate-length dependence of DC and microwave properties of submicrometer In0.53Ga0.47As HI GFETs,” IEEE Electron. Dev. Lett., 10, No. 2, 70–72 (1989).

    ADS  Google Scholar 

  118. P.-C. Chao, M. S. Shur, R. C. Tiberio, et al., “DC and microwave characteristics of sub-0.1-μm gate length planar-doped pseudomorphic HEMTs,” IEEE Trans. Electron. Dev., 36, No. 3, 461–473 (1989).

    ADS  Google Scholar 

  119. M. E. Kim, A. K. Oki, G. M. Gorman, et al., “GaAs heterojunction bipolar transistor device and IC technology for high-performance analog and microwave applications,” IEEE Trans. Microwave Theory and Techniques, 37, No. 9, 1286–1303 (1989).

    ADS  Google Scholar 

  120. P. M. Asbeck, M.-C. F. Chang, J. A. Higgins, et al., “GaAIAs/GaAs heterojunction bipolar transistors: issues and prospects for application,” IEEE Trans. Electron. Dev., 36, No. 10, 2032–2061 (1989).

    ADS  Google Scholar 

  121. Y. Ota, T. Hirose, M. Yanagihara, et al., “AlGaAs/GaAs HBT with GaInAs cap layer fabricated by multiple-self-alignment process using one mask,” Electron. Lett., 25, No. 9, 610–611 (1989).

    ADS  Google Scholar 

  122. M. Abe, T. Mimura, N. Kobayashi, et al., “Recent advances in ultrahigh-speed HEMT LSI technology,” IEEE Trans. Electron. Dev., 36, No. 10, 2021–2031 (1989).

    ADS  Google Scholar 

  123. D. Bursky, “The future for GaAs chips: denser and faster,” Electronic Design, No. 24, 51-56 (1988).

    Google Scholar 

  124. J. Požela, “Monte Carlo simulation of charge-carrier behavior in electric fields,” Computer Phys. Commun., 69, No. 1, 105–118 (1991).

    Google Scholar 

  125. M. F. Chang and P. M. Asbeck, “III-V heterojunction bipolar transistors for high-speed applications,” Int. J. High Speed Electron., 1, No. 3-4, 245–301 (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Požela, J. (1993). High-Speed Devices and Integrated Circuits. In: Physics of High-Speed Transistors. Microdevices. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1242-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1242-8_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1244-2

  • Online ISBN: 978-1-4899-1242-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics