Skip to main content

The Biedenharn-Louck Tensor Calculus From a Vector Coherent State Perspective

  • Chapter
Symmetries in Science VI
  • 234 Accesses

Abstract

In applying symmetry concepts to the description of a physical system, the following situation arises. One is given a Hilbert space ℍ which carries a reducible representation of some dynamical symmetry group G. The observables of the system are expressible as tensors under the group G and the basic problem is to carry out the following steps:

  1. (i)

    Construct a basis for ℍ which reduces G and its relevant subgroups.

  2. (ii)

    Calculate the matrix representations of the observables in this basis.

  3. (iii)

    Diagonalize the Hamiltonian for the system, calculate the observable properties of the eigenstates and compare them with experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. L.C. Biedenharn and J.D. Louck, A pattern calculus for tensor operators in the unitary groups, Commun. Math. Phys. 8:89 (1968).

    Article  MathSciNet  ADS  Google Scholar 

  2. R. Le Blanc, K.T. Hecht and L.C. Biedenharn, Screening and vertex operators for u(n), J. Phys. A: Math. Gen. 24:1393 (1991).

    Article  ADS  MATH  Google Scholar 

  3. D.J. Rowe, Coherent state theory of the noncompact symplectic group, J. Math. Phys. 25:2662 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  4. D.J. Rowe, G. Rosensteel and R. Carr, Analytical expressions for the matrix elements of the noncompact symplectic algebra, J. Phys. A: Math. Gen. 17:L399 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  5. D.J. Rowe, G. Rosensteel and R. Gilmore, Vector coherent state representation theory, J. Math. Phys. 26: 2787 (1985)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. K.T. Hecht, The vector coherent state method and its application to problems of higher symmetries, Lecture Notes in Physics, Springer, Berlin (1987)

    Google Scholar 

  7. D.J. Rowe, R. Le Blanc and K.T. Hecht, Vector coherent state theory and its application to the orthogonal groups, J. Math. Phys. 29:287 (1988).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. P. Bouwknegt, J. McCarthy and K. Pilch, Free field realizations of WZNW models. The BRST complex and its quantum group structure, Phys. Lett. B, 234:297 (1990); Quantum group structure in the Fock space resolutions of sl(n) representations, Commun. Math. Phys. 131:125 (1990).

    Article  MathSciNet  ADS  Google Scholar 

  9. K.T. Hecht, A new generalization of vector coherent state theory and the quantized Bogoliubov transformation of Abraham Klein, in “The Proceedings of the Symposium on Contemporary Physics,” M Vallieres, ed., in press.

    Google Scholar 

  10. D.J. Rowe and J. Repka, Vector-coherent-state theory as a theory of induced representations, J. Math. Phys. 32:2614 (1991).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. L.C. Biedenharn, Symetry properties of nuclei, in “Proceedings of the Fifteenth Solvay Conference on Physics,” Gordan and Breach, London, 1970.

    Google Scholar 

  12. J.-P. Serre, Representations linéaires et espaces homogènes Kählerians des groupes de Lie compacts in “Séminaires Bourbaki, 6{sue} année, 1953/54,” Inst. Henri Poincaré, Paris, 1954.

    Google Scholar 

  13. D.-N. Verma, Structure of certain induced representations of complex semisimple Lie algebras, Bull. Amer. Math. Soc. 74: 160, 628 (1968).

    Google Scholar 

  14. Harish Chandra, Representations of semisimple Lie groups IV, Amer. J. Math. 77:743 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  15. Representations of semisimple Lie groups V, Amer. J. Math. 78:1 (1956)

    Article  MathSciNet  Google Scholar 

  16. Representations of semisimple Lie groups VI, Amer. J. Math. 78:564 (1956).

    Article  MathSciNet  Google Scholar 

  17. R. Godement, Seminaire Cartan, École Normale Supérieure, Paris, 1958

    Google Scholar 

  18. G. Rosensteel and D.J. Rowe, The discrete series of Sp(n,ℝ), Int. J. Theor. Phys. 16:63 (1977).

    Article  MathSciNet  MATH  Google Scholar 

  19. J. Deenen and C. Quesne, Partially coherent states of the real symplectic group, J. Math. Phys. 25:2354 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  20. C. Quesne, Coherent states of the real symplectic group in a complex analytic parametrization. I. Unitary-operator coherent states, J. Math. Phys. 27:428 (1986).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. D.J. Rowe, R. Le Blanc and J. Repka, A rotor expansion of the su(3) Lie algebra, J. Phys. A: Math. Gen. 22:L3O9 (1989)

    Article  Google Scholar 

  22. D.J. Rowe and R. Le Blanc; Superfield and matrix realizations of highest weight representations for osp(m/2n), J. Math. Phys. 31:14 (1990).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. B. Kostant, Verma modules and the existence of quasi-invariant differential operators, in “Non-commutative Harmonic Analysis,” Lect. Notes in Math. 466:101 (1974).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rowe, D.J., Repka, J. (1993). The Biedenharn-Louck Tensor Calculus From a Vector Coherent State Perspective. In: Gruber, B. (eds) Symmetries in Science VI. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1219-0_53

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1219-0_53

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1221-3

  • Online ISBN: 978-1-4899-1219-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics