Skip to main content

Representations of Classical Groups on the Lattice and its Application to the Field Theory on Discrete Space-Time

  • Chapter
Symmetries in Science VI

Abstract

We explore the mathematical consequences of the assumption of a discrete space-time. The fundamental laws of physics have to be translated into the language of discrete mathematics. We find integral transformations that leave the lattice of any dimension invariant and apply these transformations to field equations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barut, A.O. and Raczka, R. (1965). “Classification of non-compact real Lie Groups and Groups containing the Lorentz Group”, Proc. Roy. Soc. London Series A, 287, 519–548.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Beckers, J., Harnad, J., Perroud, M. and Winternitz, P. (1978). “Tensor field invariant under subgroups of the conformai group of space-time”, J. Math. Phys., 19, 2126–2153.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Castell, L., Drieschner, M. and Weizsaecker, C.F. ed. (1975-7-9-81-83-85). Quantum Theory and the Structure of Space and Time, Hanser, vol. 1-6.

    Google Scholar 

  • Cayley, A. (1846). Journal fĂĽr reine und angewandte Mathematik, 32, 1 (1889). Collected Mathematical Papers, Cambridge, 117.

    Google Scholar 

  • Earman, J. (1989). World Enough and Space and Time, Relational Theories of Space and Time, Cambridge.

    Google Scholar 

  • Gel’fan, I.M., Minlos, R.A. and Saphiro, Z. (1963). Representations of the Rotation and Lorentz Groups and their Applications, Pergamon Press.

    Google Scholar 

  • GrĂĽnbaum, A. (1977). “Absolute and Relational Theories of space and Time”, in Minnesota Studies in the Philosophy of Science (J. Earman, C. Glymour, J. Stachel, ed.). University of Minnesota Press, vol. VII.

    Google Scholar 

  • Helgason, S. (1978). Differential Geometry, Lie Groups and Symmetric Spaces. Academic Press, p. 518.

    Google Scholar 

  • Jammer, M. (1969). Concepts of Space and Time. Cambridge. Harvard U. Press.

    Google Scholar 

  • Lorente, M. (1974). “Cayley Parametrization of Semisimple Lie Groups and its Application to Physical Laws in a (3+1)-Dimensional Cubic Lattice”, Int. J. Theor. Phys. 11, 213–247.

    Article  MathSciNet  Google Scholar 

  • Lorente, M. (1976). “Basis for a Discrete Special Relativity”, Int. J. Theor. Phys. 12, 927.

    Article  MathSciNet  Google Scholar 

  • Lorente, M. (1986a). “Space-time Groups for the Lattice”, Int. J. Theor. Phys. 25, 55–65.

    Article  MathSciNet  MATH  Google Scholar 

  • Lorente, M. (1986b) “A Causal Interpretation of the Structure of Space and Time”. Foundations of Physics, HölderPichler-Tempsky, Viena.

    Google Scholar 

  • Lorente, M. (1986c). “Physical Models on Discrete Space and Time”, in Symmetries in Science II (B. Gruber, R. Lenczweski, eds.), Plenum Press.

    Google Scholar 

  • Lorente, M. (1987). “The Method of Finite Differences for Some Operator Field Equations”, Lett. Math. Phys. 13, 229–236.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Lorente, M. (1991). “Lattice Fermions with Axial Anomaly and without Species Doubling”, II Int. Wigner Symposium, Goslar.

    Google Scholar 

  • Lorente, M. (1992). “A Relativistic Invariant Scheme for the Quantum Klein-Gordon and Dirac Fields on the Lattice”. XIX Int. Colloquium on Group Theoretical Methods in Physics, Salamanca.

    Google Scholar 

  • Møller, C. (1952). The Theory of Relativity, Oxford p. 42.

    Google Scholar 

  • Naimark, M.A. (1964). Linear Representation of the Lorentz Group, Pergamon Press, p. 92.

    Google Scholar 

  • Penrose R. (1971). “Angular momentum: an approach to combinatorial Space-time” in Quantum Theory and Beyond (T. Bastin, ed.), Cambridge.

    Google Scholar 

  • Schild, A. (1949). “Discrete space-time and integral Lorentz transformations”, Canadian Journal of Mathematics, 1, 29–47.

    Article  MathSciNet  MATH  Google Scholar 

  • Wigner, E.P. (1959). Group theory and Its Application to the Quantum Mechanics of Atomic Spectra, Academic Press, p. 160.

    Google Scholar 

  • Yamamoto, H. (1985). Phys. Rev. DS2, 2659.

    ADS  Google Scholar 

  • Yamamoto, H. (1991). “Noether Theorem and Gauge Theory in the Field Theory on Discrete Spacetime”, II Int. Wigner Symposium, Goslar.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lorente, M. (1993). Representations of Classical Groups on the Lattice and its Application to the Field Theory on Discrete Space-Time. In: Gruber, B. (eds) Symmetries in Science VI. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1219-0_36

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1219-0_36

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1221-3

  • Online ISBN: 978-1-4899-1219-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics