Skip to main content

Lipids, Oligomers, and Proteins

  • Chapter
Book cover Molecular Biology of Membranes
  • 142 Accesses

Abstract

Biological membranes are composed of lipids, proteins, and carbohydrates, although their relative quantities vary widely. Membranes from various sources are composed of 20 to 60% protein, 30 to 80% lipid and 0 to 10% carbohydrate by weight. In this and the following chapter we discuss the molecules and macromolecules that assemble to form membranes. This chapter focuses on membrane-associated lipids, oligomers, and proteins. Chapter 3 discusses membrane carbohydrates and skeletons. We shall begin by considering lipids, a fundamental component of every membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Further Reading

Lipids

  • Bretscher, M. S. 1972. Asymmetrical lipid bilayer structure for biological membranes. Nature 236:11–12.

    Article  CAS  Google Scholar 

  • Buldt, G., and Wohlgemuth, R. 1981. The headgroup conformation of phospholipids in membranes. J. Membr. Biol. 58:81–100.

    Article  PubMed  CAS  Google Scholar 

  • Dahl, J. et al. 1980. Sterols in membranes: Growth characteristics and membrane properties of Mycoplasma capricolum cultured on cholesterol and lanoserol. Biochemistry 19:1467–1472.

    Article  PubMed  CAS  Google Scholar 

  • Demel, R. A., et al. 1977. The preferential interaction of cholesterol with different classes of phospholipids. Biochim. Biophys. Acta 465:1–10.

    Article  PubMed  CAS  Google Scholar 

  • Engleman, D. M., and Rothman, X E. 1972. The planar organization of lecithin-cholesterol bilayers. J. Biol. Chem. 247:3694–3697.

    Google Scholar 

  • Hannun, Y. A., and Bell, R. M. 1989. Functions of sphingolipids and sphingolipid breakdown products in cellular regulation. Science 243:500–507.

    Article  PubMed  CAS  Google Scholar 

  • Johnston, N. C, and Goldfine, H. 1985. Phospholipid aliphatic chain composition modulates lipid class composition, but not lipid asymmetry in Clostridium butyricum. Biochim. Biophys. Acta 813:10–18.

    Article  CAS  Google Scholar 

  • Karnovsky, M. J., et al. 1982. The concept of lipid domains in membranes. J. Cell Biol. 94:1–6.

    Article  PubMed  CAS  Google Scholar 

  • McConnell, H. M., et al. 1986. Supported planar membranes in studies of cell-cell recognition in the immune system. Biochim. Biophys. Acta 864:95–106.

    Article  PubMed  CAS  Google Scholar 

  • Miljanich, G. R, et al. 1981. The asymmetric transmembrane distribution of phosphatidyl-ethanolamine, phosphatidylserine, and fatty acids of the bovine retinal rod outer segment disk membrane. J Membr. Biol. 60:249–255.

    Article  PubMed  CAS  Google Scholar 

  • Montai, M., and Mueller, P. 1972. Formation of biomolecular membranes from lipid monolayers and a study of their electrical properties. Proc. Natl. Acad. Sci. USA 69:3561–3566.

    Article  Google Scholar 

  • Op den Kamp, J. A. F 1979. Lipid asymmetry in membranes. Annu. Rev. Biochem. 48:47–71.

    Article  PubMed  CAS  Google Scholar 

  • Rilfors, L. 1985. Difference in packing properties between iso and anteiso methyl-branched fatty acids as revealed by incorporation into the membrane lipids of Acholeplasma laidlawii strain A. Biochim. Biophys. Acta 813:151–160.

    Article  CAS  Google Scholar 

  • Rogers, J., et al. 1979. The organization of cholesterol and ergosterol in lipid bilayers based on studies using non-perturbing fluorescent sterol probes. Biochim. Biophys. Acta 552:23–37.

    Article  PubMed  CAS  Google Scholar 

  • Rujanavech, C, and Silbert, D. E 1986. LM cell growth and membrane lipid adaptation to sterol structure. J. Biol. Chem. 261:7196–7203.

    PubMed  CAS  Google Scholar 

  • Somerville, C, and Browse, J. 1991. Plant lipids: Metabolism, mutants, and membranes. Science 252:80–87.

    Article  PubMed  CAS  Google Scholar 

  • Svennerholm, L. 1963. Chromatographie separation of human brain gangliosides. J. Neurochem. 10:613–623.

    Article  PubMed  CAS  Google Scholar 

  • Tanford, C. 1980. The Hydrophobie Effect. Wiley, New York.

    Google Scholar 

  • Thompson, T. E., and Tillack, T. W 1985. Organization of glycosphingolipids in bilayers and plasma membranes of mammalian cells. Annu. Rev. Biophysics Biophys. Chem. 14:361–386.

    Article  CAS  Google Scholar 

  • Vance, D. E., and Vance, J. E. 1985. Biochemistry of Lipids and Membranes. Benjamin-Cummings, Menlo Park, Calif.

    Google Scholar 

Oligomers

  • Anderson, O. S. 1984. Gramicidin channels. Annu. Rev. Physiol. 46:531–548.

    Article  Google Scholar 

  • Bamberg, E., et al. 1977. Structure of the gramicidin A channel. Distinction between πL,D the β helix by electrical measurements with lipid bilayer membranes. Proc. Natl. Acad. Sci. USA 74:2402–2406.

    Article  PubMed  CAS  Google Scholar 

  • Baumann, G., and Mueller, P. 1975. A molecular model of electrical excitability. J. Supramol. Struct. 2:538–557.

    Article  Google Scholar 

  • Christensen, H. N. 1975. Biological Transport. Benjamin, Reading, Mass.

    Google Scholar 

  • Lear, J. D., et al. 1988. Synthetic amphiphilic peptide models for protein ion channels. Science 240:1177–1181.

    Article  PubMed  CAS  Google Scholar 

  • Morrow, J. S., et al. 1979. Transmembrane channel activity of gramicidin A analogs: Effects of modification and deletion of the amino terminal residue. J. Mol. Biol. 192:733–738.

    Article  Google Scholar 

  • Toro, M., et al. 1987. Formation of ion-translocating ligomers by nigerian. J. Membr. Biol. 95:1–8.

    Article  PubMed  CAS  Google Scholar 

  • Urry, D. W., et al. 1971. The gramicidin A transmembrane channel: Characteristics of head-to-head dimerized π(l,d) helices. Proc. Natl. Acad. Sci. USA 68:1907–1911.

    Article  PubMed  CAS  Google Scholar 

  • Wade, D., et al. 1990. All-D amino acid-containing channel-forming antibiotic peptides. Proc. Natl. Acad. Sci. USA 87:4761–4765.

    Article  PubMed  CAS  Google Scholar 

  • Wallace, B. A., and Ravikumar, K. 1988. The gramicidin pore: Crystal structure of a cesium complex. Science 241:182–187.

    Article  PubMed  CAS  Google Scholar 

Proteins

  • Adams, G. A., and Rose, J. K. 1985. Structural requirements of a membrane-spanning domain for protein anchoring and cell surface transport. Cell 41:1007–1015.

    Article  PubMed  CAS  Google Scholar 

  • Bordier, C, et al. 1986. Leishmania and Trypanosoma surface glycoproteins have a common glycophospholipid membrane anchor. Proc. Natl. Acad. Sci. USA 83:5988–5991.

    Article  PubMed  CAS  Google Scholar 

  • Braun, V, and Bosch, V 1972. Repetitive sequences in the murein-lipoprotein of the cell wall of Escherichia coli. Proc. Natl. Acad. Sci. USA 69:970–974.

    Article  CAS  Google Scholar 

  • Bretscher, M. S. 1971a. A major protein which spans the human erythrocyte membrane. J. Mol. Biol. 59:351–357.

    Article  PubMed  CAS  Google Scholar 

  • Bretscher, M. S. 1971b. Major human erythrocyte glycoprotein spans the cell membrane. Nature New Biol. 231:229–232.

    Article  PubMed  CAS  Google Scholar 

  • Chamberlain, B. K., et al. 1978. Association of the major coat protein of fd bacteriophage with phospholipid vesicles. Biochim. Biophys. Acta 510:18–37.

    Article  PubMed  CAS  Google Scholar 

  • Chen, R., et al. 1979. Primary structure of major outer membrane protein I of Escherichia coli B/r. Proc. Natl. Acad. Sci. USA 76:5014–5017.

    Article  PubMed  CAS  Google Scholar 

  • Ching, G., and Inuoye, M. 1986. Expression of the Proteus mirabilis lipoprotein gene in Escherichia coli. Existence of tandem promoters. J. Biol. Chem. 261:4600–4606.

    PubMed  CAS  Google Scholar 

  • Cotmore, S., et al. 1911. Immunochemical evidence for a transmembrane orientation of glycophorin A: Localization of ferritin-antibody conjugates in intact cells. J. Mol. Biol. 113:539–553.

    Article  Google Scholar 

  • Engelman, D. M., et al. 1980. Path of the polypeptide in bacteriorhodopsin. Proc. Natl. Acad. Sci. USA 77:2023–2027.

    Article  PubMed  CAS  Google Scholar 

  • Ferguson, M. A. J., et al. 1988. Glycosyl-phosphatidylinositol moiety that anchors Trypanosoma brucei variant surface glycoprotein to the membrane. Science 239:753–759.

    Article  PubMed  CAS  Google Scholar 

  • Gerber, G. E. 1977. Orientation of bacteriorhodopsin in Halobacterium halobium as studied by selective proteolysis. Proc. Natl. Acad. Sci. USA 74:5426–5430.

    Article  PubMed  CAS  Google Scholar 

  • Henderson, R. 1977. The purple membrane from Halobacterium halobium. Annu. Rev. Biophys. Bioeng. 6:87–109.

    Article  CAS  Google Scholar 

  • Henning, U., et al. 1979. Cloning of the structural gene (omp A) for an integral outer membrane protein of Escherichia coli K-12. Proc. Natl. Acad. Sci. USA 76:4360–4364.

    Article  PubMed  CAS  Google Scholar 

  • Inuouye, M. 1974. A three-dimensional molecular assembly model of a lipoprotein from the Escherichia coli outer membrane. Proc. Natl. Acad. Sci. USA 71:2396–2400.

    Article  Google Scholar 

  • Jay, D., and Cantley, L. 1986. Structural aspects of the red cell anion exchange protein. Annu. Rev. Biochem. 55:511–538.

    Article  PubMed  CAS  Google Scholar 

  • Jennings, M. L., et al. 1984. Peptides of human band 3 protein produced by extracellular papain cleavage. J. Biol. Chem. 259:4652–4660.

    PubMed  CAS  Google Scholar 

  • Kopito. R. R., and Lodish, H. E 1985a. Primary structure and transmembrane orientation of the murine anion exchange protein. Nature 316:234–238.

    Article  PubMed  CAS  Google Scholar 

  • Kopito. R. R., and Lodish, H. F 1985b. Structure of the murine anion exchange protein. J. Cell. Biochem. 29:1–17.

    Article  PubMed  CAS  Google Scholar 

  • Kyte, J., and Doolittle, R. E 1982. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157:105–132.

    Article  PubMed  CAS  Google Scholar 

  • Lai, J.-S., et al. 1981. Bacillus licheniformis penicillinase synthesized in Escherichia coli contains covalently linked fatty acid and glyceride. Proc. Natl. Acad. Sci. USA 78:3506–3510.

    Article  PubMed  CAS  Google Scholar 

  • Low, M. G., and Saltiel, A. R. 1988. Structural and functional roles of glycosyl-phosphatidylinositol in membranes. Science 239:268–275.

    Article  PubMed  CAS  Google Scholar 

  • Maelicke, A. 1988. Structural similarities between ion channel proteins. Trends Biochem. Sci. 13:199–202.

    Article  PubMed  CAS  Google Scholar 

  • Maniol, C., and Beckwith, J. 1986. A genetic approach to analyzing membrane protein topology. Science 233:1403–1408.

    Article  Google Scholar 

  • Mueckler, M., et al. 1985. Sequence and structure of a human glucose transporter. Science 229:941–945.

    Article  PubMed  CAS  Google Scholar 

  • Russell, D. W., et al. 1985. Domain map of the LDL receptor: Sequence homology with the epidermal growth factor precursor. Cell 37:577–585.

    Article  Google Scholar 

  • Schindler, H., and Rosenbusch, J. P. 1978. Matrix protein from Escherichia coli outer membranes forms voltage-controlled channels in lipid bilayers. Proc. Natl. Acad. Sci. USA 75:3751–3755.

    Article  PubMed  CAS  Google Scholar 

  • Schindler H., and Rosenbusch, J. P 1981. Matrix protein in planar membranes: Clusters of channels in a native membrane environment and their functional reassembly. Proc. Natl. Acad. Sci. USA 78:2302–2306.

    Article  PubMed  CAS  Google Scholar 

  • Schindler, M., and Rosenbusch, J. P. 1982. Chemical modification of matrix porin from Escherichia coll. Probing the pore topology of a transmembrane protein. J. Cell Biol. 92:742–746.

    Article  PubMed  CAS  Google Scholar 

  • Schlesinger, M. J., et al. 1980. Fatty acid acylation of proteins in cultured cells. J. Biol. Chem. 255:10021–10024.

    PubMed  CAS  Google Scholar 

  • Tomita, M., and Marchesi, V. T. 1975. Amino acid sequence and oligosaccharide attachment sites of human erythrocyte glycophorin. Proc. Natl. Acad. Sci. USA 72:2964–2968.

    Article  PubMed  CAS  Google Scholar 

  • Tse, A. G. D., et al. 1985. A glycophospholipid tail at the carboxyl terminus of the Thy-1glycoprotein of neurons and thymocytes. Science 230:1003–1008.

    Article  PubMed  CAS  Google Scholar 

  • Walder, J. A., et al. 1984. The interaction of hemoglobin with the cytoplasmic domain of band 3 of the human erythrocyte membrane. J. Biol. Chem. 259:10238–10246.

    PubMed  CAS  Google Scholar 

  • Weiss, M. S., et al. 1991. Molecular architecture and electrostatic properties of bacterial porin. Science 254:6127–6130.

    Google Scholar 

  • Yamamoto, T., et al. 1984. The human LDL receptor: A cysteine-rich protein with multiple Alu sequences in its mRNA. Cell 39:27–38.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Petty, H.R. (1993). Lipids, Oligomers, and Proteins. In: Molecular Biology of Membranes. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1146-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1146-9_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1148-3

  • Online ISBN: 978-1-4899-1146-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics