Skip to main content

Immortalization of Keratinocytes by Human Papillomaviruses

  • Chapter
DNA Tumor Viruses

Part of the book series: Infectious Agents and Pathogenesis ((IAPA))

Abstract

Human papillomaviruses (HPVs) have a unique position in viral carcinogenesis studies. They are ubiquitous, cause chronic infection, and are well adapted to the host immune system. In 1907, Ciuffo demonstrated that the infectious agent for the common wart persisted in filtered homogenates and, thus, clearly established that it was not either a bacterium or protozoan.(1) Subsequently, it was determined that common warts are associated with HPV-1 and -2. Analysis of the genetic drift of HPV-16, the most common HPV associated with cervical cancer, suggests that the viruses evolved slowly.(2) Presently, there are more than 100 types of HPV, including more than 65 that have been characterized and partially cloned.(3) The uniqueness of HPV and nonhuman papillomaviruses (PV) is that animal viruses do not infect humans, and vice versa; thus, there is species specificity. In addition, tissue tropism exists. Thus, a specific HPV type is associated with a specific anatomic site of infection. The cell biology and pathogenesis of different HPV infections has recently been reviewed.(4,5)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ciuffo, G., 1907, Innesto positivo con filtrato di verruca volgare, G.Ital. Mal. Venereol. 48:12–18.

    Google Scholar 

  2. Ho, L., Chan, S.-Y, Burk, R. D., Das, B. C., Fujinaga, K., Icenogle, J. P., Kahn, T., Kiviat, N., Lancaster, W., Mavromara-Nazos, P., Labropoulou, V., Mitrani-Rosenbaum, S., Norrild, B., Pillai, M. R., Stoerker, J., Syrjaenen, K., Syrjaenen, S., Tay, S.-K., Villa, L. L., Wheeler, C. M., Williamson, A.-L., and Bernard, H.-U., 1993, The genetic drift of human papillomavirus type 16 is a means of reconstructing prehistoric viral spread and the movement of ancient human populations. J. Virol. 67:6413–6423.

    PubMed  CAS  Google Scholar 

  3. van Ranst, M., Tachezy, R., Delius, H., and Burk, R. D., 1993, Taxonomy of human papilloma-viruses, Papillomavirus Rep. 4:61–65.

    Google Scholar 

  4. zur Hausen, H., and de Villiers, E.-M., 1994, Human papillomaviruses, Ann. Rev. Microbiol 48:427–447.

    Google Scholar 

  5. Lowy, D. R., Kirnbauer, R., and Schiller, J. T., 1994, Genital human papillomavirus infection, Proc. Natl. Acad. Sci. USA 91:2436–2440.

    PubMed  CAS  Google Scholar 

  6. Shope, R. E., and Hurst, E. W., 1933, Infectious papillomatosis of rabbits; with a note on the histopathology, J. Exp. Med. 58:607–624.

    PubMed  CAS  Google Scholar 

  7. Kreider, J. W., and Bartlett, G. L., 1981, The Shope papilloma-carcinoma complex of rabbits: A model system of neoplastic progression and spontaneous regression, Adv. Cancer Res. 35:81–110.

    PubMed  CAS  Google Scholar 

  8. Ustav, M., and Stenlund, A., 1991, Transient replication of BPV-1 requires two viral polypeptides encoded by the El and E2 open reading frames, EMBO J. 10:449–457.

    PubMed  CAS  Google Scholar 

  9. Mohr, I. J., Clark, R., Sun, S., Androphy, E. J., MacPherson, P., and Botchan, M. R., 1990, Targeting the El replication protein to the papillomavirus origin of replication by complex formation with the E2 transactivator, Science 250:1694–1699.

    PubMed  CAS  Google Scholar 

  10. Lambert, P. F., 1991, Papillomavirus DNA replication, J. Virol. 65:3417–3420.

    PubMed  CAS  Google Scholar 

  11. McBride, A. A., Romanczuk, H., and Howley, P. M., 1991, The papillomavirus E2 regulatory proteins, J. Biol Chem. 266:18411–18414.

    PubMed  CAS  Google Scholar 

  12. DiPaolo J. A., Popescu, N. C., Alvarez, L., and Woodworth, C. D., 1993, Cellular and molecular alterations in human epithelial cells transformed by recombinant human papillomaviruses, Crit. Rev. Oncogen. 4:337–360.

    CAS  Google Scholar 

  13. Doorbar, J., Ely, S., Sterling, J., McLean, C., and Crawford, L., 1991, Specific interaction between HPV-16 E1-E4 and cytokeratins results in collapse of the epithelial cell intermediate filament network. Nature 352:824–827.

    PubMed  CAS  Google Scholar 

  14. Sousa, R., Dostatni, N., and Yaniv, M., 1990, Control of papillomavirus gene expression, Biochim. Biophys. Acta 1032:19–37.

    PubMed  CAS  Google Scholar 

  15. Turek, L. P., 1994, The structure, function and regulation of papillomaviral genes in infection and cervical cancer, Adv. Cancer Res. 44:305–356.

    CAS  Google Scholar 

  16. Kreider, J. W., Howett, M. K., Wolfe, S. A., Bartlett, G. L., Zaino, R. J., Sedlacek, T. V., and Mortel, R., 1985, Morphological transformation in vivo of human uterine cervix with papillomavirus from condylomata acuminata, Nature 317:639–641.

    PubMed  CAS  Google Scholar 

  17. Sterling, J., Stanley, M., Gatward, G., and Minson, T., 1990, Production of human papillomavirus type 16 virions in a keratinocyte cell line, J. Virol. 64:6305–6397.

    PubMed  CAS  Google Scholar 

  18. Meyers, C., Frattini, M. G., Hudson, J. B., and Laimins, L. A., 1992, Biosynthesis of human papillomavirus from a continuous cell line upon epithelial differentiation, Science 257:971–973.

    PubMed  CAS  Google Scholar 

  19. Dollard, S. C., Wilson, J. L., Demeter, L. M., Bonnez, W., Reichman, R. C., Broker, T. R., and Chow, L. T., 1992, Production of human papillomavirus and modulation of the infectious program in epithelial raft cultures, Genes Dev. 6:1131–1142.

    PubMed  CAS  Google Scholar 

  20. Durst, M., Kleinheinz, A., Hotz, M., and Gissmann, L., 1985, The physical state of human papillomavirus type 16 DNA in benign and malignant genital tumors, J. Gen. Virol. 66:1515–1522.

    PubMed  Google Scholar 

  21. Schneider-Gädicke, A., and Schwarz, E., 1986, Different human cervical carcinoma cell lines show similar transcription patterns of human papillomavirus type 18 early genes, EMBO J. 5:2285–2292.

    PubMed  Google Scholar 

  22. von Knebel-Doeberitz, M., Ottersdorf, T., Schwarz, E., and Gissmann, L., 1988, Correlation of modified human papillomavirus early gene expression with altered growth properties in C4-1 cervical carcinoma cells, Cancer Res. 48:3780–3786.

    Google Scholar 

  23. Steele, C., Cowsert, L. M., and Shillitoe, E. J., 1993, Effects of human papillomavirus type 18-specific antisense oligonucleotides on the transformed phenotype of human carcinoma cell lines, Cancer Res. 53:2330–2337.

    PubMed  CAS  Google Scholar 

  24. von Knebel-Doeberitz, M., Rittmüller, C., and zur Hausen, H., 1992, Inhibition of tumorigenicity of cervical cancer cells in nude mice by HPV E6-E7 antisense RNA, Int. J. Cancer 51:831–834.

    Google Scholar 

  25. Mansur, C. P., and Androphy, E. J., 1993, Cellular transformation by papillomavirus oncoproteins, Biochim. Biophys. Acta 1155:323–345.

    PubMed  CAS  Google Scholar 

  26. Rheinwald, J. G., and Green, H., 1975, Serial cultivation of strains of human epidermal keratinocytes: The formation of keratinizing colonies from single cells, Cell 6:331–344.

    PubMed  CAS  Google Scholar 

  27. Boyce, S. T., and Ham, R. G., 1983, Calcium regulated differentiation of normal human epidermal keratinocytes in chemically defined clonal culture and serum-free serial culture. J. Invest. Dermatol. 81:33s–40s.

    PubMed  CAS  Google Scholar 

  28. Pirisi, L., Yasumoto, S., Feller, M., Doniger, J., and DiPaolo, J. A., 1987, Transformation of human fibroblasts and keratinocytes with human papillomavirus type 16 DNA, J. Virol. 61:1061–1066.

    PubMed  CAS  Google Scholar 

  29. Durst, M., Dzarlieva-Petrusevska, R. T., Boukamp, P., Fusenig, N. E., and Gissmann, L., 1987, Molecular and cytogenic analysis of immortalized human primary keratinocytes obtained after transfection with human papillomavirus type 16 DNA, Oncogene 1:251–256.

    PubMed  CAS  Google Scholar 

  30. Kaur, P., and McDougall, J. K., 1988, Characterization of primary human keratinocytes transformed by human papillomavirus type 18, J. Virol. 62:1917–1924.

    PubMed  CAS  Google Scholar 

  31. Woodworth, C. D., Bowden, P. E., Doniger, J., Pirisi, L., Barnes, W., Lancaster, W. D., and DiPaolo, J. A., 1988, Characterization of normal human exocervical epithelial cells immortalized in vitro by papillomavirus types 16 and 18 DNA, Cancer Res. 48:4620–4628.

    PubMed  CAS  Google Scholar 

  32. Pecoraro, G., Morgan, D., and Defendi, V., 1989, Differential effects of human papillomavirus type 6,16, and 18 DNAs on immortalization and transformation of human cervical epithelial cells, Proc. Natl. Acad. Sci. USA 86:563–567.

    PubMed  CAS  Google Scholar 

  33. Tsutsomi, K., Belaguli, N. Q. S., Michalak, T. I., Gulliver, W. P., Pater, A., and Pater, M. M., 1992, Human papillomavirus 16 DNA immortalizes two types of normal human epithelial cells of the uterine cervix, Am. J. Pathol 140:255–261.

    Google Scholar 

  34. Woodworth, C. D., Doniger, J., and DiPaolo, J. A., 1989, Immortalization of human foreskin keratinocytes by various human papillomavirus DNAs corresponds to their association with cervical carcinoma, J. Virol. 63:159–164.

    PubMed  CAS  Google Scholar 

  35. Schlegel, R., Phelps, W. C., Zhang, Y. L., and Barbosa, M., 1988, Quantitative keratinocyte assay detects two biological activities of human papillomavirus DNA and identifies viral types associated with cervical carcinoma, EMBO J. 7:3181–3187.

    PubMed  CAS  Google Scholar 

  36. Hurlin, P. J., Kaur, P., Smith, P. P., Perez-Reyes, N., Blanton, R. A., and McDougall, J. K., 1991, Progression of human papillomavirus type 18-immortalized human keratinocytes to a malignant phenotype, Proc. Natl. Acad. Sci. USA 88:570–574.

    PubMed  CAS  Google Scholar 

  37. Pecoraro, G., Lee, M., Morgan, D., and Defendi, V., 1991, Evolution of in vitro transformation and tumorigenesis of HPV16 and HPV18 immortalized primary cervical epithelial cells, Am. J. Pathol. 138:1–8.

    PubMed  CAS  Google Scholar 

  38. Kaur, P., McDougall, J. K., and Cone, R., 1989, Immortalization of primary human epithelial cells by cloned cervical carcinoma DNA containing human papillomavirus type 16 E6/E7 open reading frames, J. Gen. Virol. 70:1261–1266.

    PubMed  CAS  Google Scholar 

  39. Hawley-Nelson, P., Vousden, K. H., Hubbert, N. L., Lowy, D. R., and Schiller, J. T., 1989, HPV16 E6 and E7 proteins cooperate to immortalize human foreskin keratinocytes. EMBOJ. 8:3905–3910.

    CAS  Google Scholar 

  40. Münger, K., Phelps, W. C., Bubb, V., Howley, P. M., and Schlegel, R., 1989, The E6 and E7 genes of the human papillomavirus type 16 together are necessary and sufficient for transformation of primary human keratinocytes, J. Virol. 63:4417–4421.

    PubMed  Google Scholar 

  41. Barbosa, M. S., and Schlegel, R., 1989, The E6 and E7 genes of HPV-18 are sufficient for inducing two stage in vitro transformation of human keratinocytes, Oncogene 4:1529–1532.

    PubMed  CAS  Google Scholar 

  42. Romanczuk, H., Villa, L. L., Schlegel, R., and Howley, P. M., 1991, The viral transcriptional regulatory region upstream of the E6 and E7 genes is a major determinant of the differential immortalization activities of human papillomavirus types 16 and 18, J. Virol. 65:2739–2744.

    PubMed  CAS  Google Scholar 

  43. Romanczuk, H., and Howley, P. M., 1992, Disruption of either the El and E2 regulatory gene of human papillomavirus type 16 increases viral immortalization capacity, Proc. Natl. Acad. Sci. USA 89:3159–3164.

    PubMed  CAS  Google Scholar 

  44. Band, V., DeCaprio, J. A., Delmolino, L., Kulesa, V., and Sager, R., 1991, Loss of p53 protein in human papillomavirus type 16 E6-immortalized human mammary epithelial cells, J. Virol. 65:6671–6676.

    PubMed  CAS  Google Scholar 

  45. Halbert, C. L., Demers, G. W., and Galloway, D. A., 1991, The E7 gene of human papillomavirus type 16 is sufficient for immortalization of human epithelial cells, J. Virol. 65:473–478.

    PubMed  CAS  Google Scholar 

  46. Woodworth, C. D., Cheng, S., Simpson, S., Hamacher, L., Chow, L., Broker, T. R., and DiPaolo, J. A., 1992, Recombinant retroviruses encoding human papillomavirus type 18 E6 and E7 genes stimulate proliferation and delay differentiation of human keratinocytes early after infection, Oncogene 7:619–626.

    PubMed  CAS  Google Scholar 

  47. Halbert, C. L., Demers, G. W., and Galloway, D. A., 1992, The E6 and E7 genes of human papillomavirus type 6 have weak immortalizing activity in human epithelial cells, J. Virol. 66:2125–2134.

    PubMed  CAS  Google Scholar 

  48. Vousden, K. H., 1994, Interactions between papillomavirus proteins and tumor suppressor gene products, Adv. Cancer Res. 64:1–24.

    PubMed  CAS  Google Scholar 

  49. Phelps, W. C., Yee, C. L., Münger, K., and Howley, P. M., 1988, The human papillomavirus type 16 E7 gene encodes transactivation and transformation functions similar to those of adeno-virus Ela. Cell 53:539–547.

    PubMed  CAS  Google Scholar 

  50. Mihara, K., Cao, X.-R., Yen, A., Chandler, S., Driscoll, B., Murphree, A. L., T’Ang, A., and Fung, Y.-K., 1989, Cell cycle-dependent regulation of phosphorylation of the human retinoblastoma gene product, Science 246:1300–1303.

    PubMed  CAS  Google Scholar 

  51. Münger, K., Werness, B. A., Dyson, N., Phelps, W. C., Harlow, E., and Howley, P. M., 1989, Complex formation of human papillomavirus E7 proteins with the retinoblastoma tumor suppressor gene product EMBO J. 8:4099–4105.

    PubMed  Google Scholar 

  52. Münger, K., and Phelps, W. C., 1993, The human papillomavirus E7 protein as a transforming and transactivating factor, Biochim. Biophys. Acta 1155:111–123.

    PubMed  Google Scholar 

  53. Chellappan, S., Kraus, V. B., Kroger, B., Münger, K., Howley, P. M., Phelps, W. C., and Nevins J. R., 1992, Adenovirus E1A, simian virus 40 tumor antigen, and human papillomavirus E7 protein share the capacity to disrupt the interaction between transcription factor E2F and the retinoblastoma gene product, Proc. Natl. Acad. Sci. USA 89:4549–4553.

    PubMed  CAS  Google Scholar 

  54. Nevins, J. R., 1992, E2F: A link between the Rb tumor suppressor protein and viral oncoproteins, Science 258:424–429.

    PubMed  CAS  Google Scholar 

  55. Melillo, R. M., Helin, K., Lowy, D. R., and Schiller, J. T, 1994, Positive and negative regulation of cell proliferation by E2F-1: Influence of protein level and human papillomavirus oncoproteins, Mol. Cell. Biol. 14:8241–8249.

    PubMed  CAS  Google Scholar 

  56. Jewers, R. J., Hildebrandt, P., Ludlow, J. W., Kell, B., and McCance, D. J., 1992, Regions of human papillomavirus type 16 E7 oncoprotein required for immortalization of human keratinocytes, J. Virol. 66:1329–1335.

    PubMed  CAS  Google Scholar 

  57. Defeo-Jones, D., Vuocolo, G. A., Haskell, K. M., Hanobik, M. G., Kiefer, D. M., McAvoy, E. M., Ivey-Hoyle, M., Brandsma, J. L., Oliff, A., and Jones, R. E., 1983, Papillomavirus E7 protein binding to the retinoblastoma protein is not required for viral induction of warts, J. Virol. 67:716–725.

    Google Scholar 

  58. Vogelstein, B., and Kinzler, K., 1992, p53 function and disfunction, Cell 70:523–526.

    PubMed  CAS  Google Scholar 

  59. Sarnow, P., Ho, Y. S., Williams, J., and Levine, A. J., 1982, Adenovirus Elb-58 Kd tumor antigen and SV40 large tumor antigen are physically associated with the same 54 Kd cellular protein in transformed cells, Cell 28:387–394.

    PubMed  CAS  Google Scholar 

  60. Lane, D. P., and Crawford, L. V., 1979, T antigen is bound to a host protein in SV40-transformed cells, Nature 278:261–263.

    PubMed  CAS  Google Scholar 

  61. Werness, B. A., Levine, A. J., and Howley, P. M., 1990, Association of human papillomavirus types 16 and 18 E6 proteins with p53, Science 248:76–79.

    PubMed  CAS  Google Scholar 

  62. Scheffner, M., Werness, B. A., Huibregtse, J. M., Levine, A. J., and Howley, P. M., 1990, The E6 oncoprotein encoded by the human papillomavirus types 16 and 18 promotes degradation of p53, Cell 63:1129–1136.

    PubMed  CAS  Google Scholar 

  63. Crook, T., Tidy, J. A., and Vousden, K. H., 1991, Degradation of p53 can be targeted by HPV E6 sequences distinct from those required for p53 binding and transactivation, Cell 67:547–556.

    PubMed  CAS  Google Scholar 

  64. Huibregtse, J. M., Scheffner, M., and Howley, P. M., 1993, Cloning and expression of the cDNA for E6-AP, a protein that mediates the interaction of the human papillomavirus E6 oncoprotein with p53, Mol. Cell. Biol. 13:775–784.

    PubMed  CAS  Google Scholar 

  65. Hubbert, N. L., Sedman, S. A., and Schiller, J. T., 1992, Human papillomavirus type 16 E6 increases the degradation rate of p53 in human keratinocytes, J. Virol. 66:6237–6241.

    PubMed  CAS  Google Scholar 

  66. Lechner, M. S., Mack, D. H., Finicle, A. B., Crook, T., Vousden, K. H., and Laimins, L. A., 1992, Human papillomavirus E6 proteins bind p53 in mvoand abrogate p53-mediated repression of transcription, EMBO J. 11:3045–3052.

    PubMed  CAS  Google Scholar 

  67. Mietz, J. A., Unger, T., Huibregtse, J. M., and Howley, P. M., 1992, The transcriptional transactivation function of wild type p53 is inhibited by SV40 large T antigen and by HPV-16 E6 oncoprotein, EMBO J. 11:5013–5020.

    PubMed  CAS  Google Scholar 

  68. Scheffner, M., Münger, K., Byrne, J., and Howley, P. M., 1991, The state of the p53 and retinoblastoma genes in human cervical carcinoma lines, Proc. Natl. Acad. Sci. USA 88:5523–5527.

    PubMed  CAS  Google Scholar 

  69. Woodworth, C. D., Wang, H., Simpson, S., Alvarez-Salas, L. M., and Notario, V., 1993, Overexpression of wild type p53 alters growth and differentiation of normal human keratinocytes but not human papillomavirus-expressing cell lines, Cell Growth Differ. 4:367–376.

    PubMed  CAS  Google Scholar 

  70. Kastan, M. B., Onyekwere, O., Sidransky, D., Vogelstein, B., and Craig, R., 1991, Participation of p53 protein in the cellular response to DNA damage, Cancer Res. 51:6304–6311.

    PubMed  CAS  Google Scholar 

  71. Kessis, T. D., Slebos, R. J., Nelson, W. G., Kastan, M. B., Plunkett, B. S., Han, S. M., Lorincz, A. T., Hedrick, L., and Cho, K. R., 1993, Human papillomavirus 16 E6 expression disrupts the p53-mediated cellular response to DNA damage, Proc. Natl. Acad. Sci. USA 90:3988–3992.

    PubMed  CAS  Google Scholar 

  72. Demers, G. W., Foster, S. A., Halbert, C. L., and Galloway, D. A., 1994, Growth arrest by induction of p53 in DNA damaged keratinocytes is by-passed by human papillomavirus 16 E7, Proc. Natl. Acad. Sci. USA 91:4382–4386.

    PubMed  CAS  Google Scholar 

  73. Slebos, R.J. C., Lee, M. H., Plunkett, B. S., Kessis, T. D., Williams, B. O. Jacks, T., Hedrick, L., Kastan, M. B., and Cho, K. R., 1994, p53-dependent Gl arrest involves pRb-related proteins and is disrupted by the human papillomavirus 16 E7 oncoprotein. Proc. Natl. Acad. Sci. USA 91:5320–5324.

    PubMed  CAS  Google Scholar 

  74. Schiller, J. T., Vass, W. C., Vousden, K. H., and Lowy, D. R., 1986, E5 open reading frame of bovine papillomavirus type I encodes a transforming gene, J. Virol. 57:1–6.

    PubMed  CAS  Google Scholar 

  75. Goldstein, D. J., Finbow, M. E., Andresson, T., McLean, P., Smith, K., Bubb, V., and Schlegel, R., 1991, Bovine papillomavirus E5 oncoprotein binds to the 16K component of vacuolar H+ ATPases, Nature 352:347–349.

    PubMed  CAS  Google Scholar 

  76. Petti, L., and DiMaio, D., 1992, Stable association between the bovine papillomavirus E5 transforming protein and activated platelet-derived growth factor receptor in transformed mouse cells, Proc. Natl. Acad. Sci. USA 89:6736–6740.

    PubMed  CAS  Google Scholar 

  77. Martin, P., Vass, W. C., Schiller, J. T., Lowy, D. R., and Velu, T. J., 1989, The bovine papillomavirus E5 transforming protein can stimulate the transforming activity of EGF and CSF-1 receptors, Cell 59:21–32.

    PubMed  CAS  Google Scholar 

  78. Leptak, C., Ramon, Y., Cajal, S., Kulke, R., Horwitz, B. H., Riese, D. J., Dotto, G. P., and DiMaio, D., 1991, Tumorigenic transformation of murine keratinocytes by the E5 genes of bovine papillomavirus type 1 and human papillomavirus type 16, J. Virol. 65:7078–7083.

    PubMed  CAS  Google Scholar 

  79. Straight, S. W., Hinkle, P. M., Jewers, R. J., and McCance, D. J., 1993, The E5 oncoprotein of human papillomavirus type 16 transforms fibroblasts and effects the downregulation of the epidermal growth factor receptor in keratinocytes, J. Virol. 67:4521–4532.

    PubMed  CAS  Google Scholar 

  80. Sizemore, N., and Rourke, E. A., 1993, Human papillomavirus 16 immortalization of normal human ectocervical cells alters retinoic acid regulation of cell growth and epidermal growth factor receptor expression, Cancer Res. 53:4511–4517.

    PubMed  CAS  Google Scholar 

  81. Vambutas, A., DiLorenzo, T. P., and Steinberg, B. M., 1993, Laryngeal papilloma cells have high levels of epidermal growth factor receptor and respond to EGF by a decrease in epithelial differentiation, Cancer Res. 53:910–914.

    PubMed  CAS  Google Scholar 

  82. McCance, D. J., Kopan, R., Fuchs, E., and Laimins, L. A., 1988, Human papillomavirus type 16 alters human epithelial cell differentiation in vitro, Proc. Natl. Acad. Sci. USA 85:7169–7173.

    CAS  Google Scholar 

  83. Blanton, R. A., Perez-Reyes, N., Merrick, D. T., and McDougall, J. K., 1991, Epithelial cells immortalized by human papillomaviruses have premalignant characteristics in organotypic culture, Am. J. Pathol 138:673–685.

    PubMed  CAS  Google Scholar 

  84. Hudson, J. B., Bedell, M. A., McCance, D. J., and Laimins, L. A., 1990, Immortalization and altered differentiation of human keratinocytes in vitro by the E6 and E7 open reading frames of human papillomavirus type 18, J. Virol. 64:519–526.

    PubMed  CAS  Google Scholar 

  85. Woodworth, C. D., Waggoner, S., Barnes, W., Stoler, M. H., and DiPaolo, J. A., 1990, Human cervical and foreskin epithelial cells immortalized by human papillomavirus DNAs exhibit hysplastic differentiation in vivo, Cancer Res. 50:3709–3715.

    PubMed  CAS  Google Scholar 

  86. Barnes, W., Delgado, G., Kurman, R. J., Petrilli, E. S., Smith, D. M., Ahmed, S., Lorincz, A. T., Temple, G. F., Jenson, A. B., and Lancaster, W. D., 1988, Possible prognostic significance of human papillomavirus type in cervical cancer, Gynecol. Oncol. 29:267–273.

    PubMed  CAS  Google Scholar 

  87. Durst, M., Bosch, R X., Glitz, D., Schneider, A., and zur Hausen, H., 1991, Inverse relationship between human papillomavirus (HPV) type 16 early gene expression and cell differentiation in nude mouse epithelial cysts and tumors induced by HPV-positive human cell lines, J. Virol. 65:796–804.

    PubMed  CAS  Google Scholar 

  88. Blanton, R. A., Coltrera, M. D., Gown, A. M., Halbert, C. L., and McDougall, J. K., 1992, Expression of the HPV16 E7 gene generates proliferation in stratified squamous cell cultures which is independent of endogenous p53 levels, Cell Growth Differ. 3:791–802.

    PubMed  CAS  Google Scholar 

  89. DiPaolo, J. A., Pirisi, L., Popescu, N. C., Yasumoto, S., and Doniger, J., 1987, Progressive changes induced in human and mouse cells by human papillomavirus type-16 DNA, in: Papillomavirus (B. N. Steinberg, J. L. Brandsma, and L. B. Taichman, eds.), Cold Spring Harbor Laboratory, New York, pp. 253–257.

    Google Scholar 

  90. Pirisi, L., Yasumoto, S., Feller, M., Doniger, J., and DiPaolo, J. A., 1987, Transformation of human fibroblasts and keratinocytes with human papillomavirus type 16 DNA, Carcinogenesis 61:1061–1066.

    CAS  Google Scholar 

  91. Popescu, N. C., and DiPaolo, J. A., 1990, Integration of human papillomavirus 16 DNA and genomic rearrangements in immortalized human keratinocyte lines. Cancer Res. 50:1316–1323.

    PubMed  CAS  Google Scholar 

  92. DiPaolo, J. A., Woodworth, C. D., Popescu, N. C., Notario, V., and Doniger, J., 1989, Induction of human cervical squamous cell carcinoma by sequential transfection with human papillomavirus 16 DNA and viral ras, Oncogene 4:395–399.

    CAS  Google Scholar 

  93. Smith, P. P., Bryant, E. M., Kaur, P., and McDougall, J. K., 1989, Cytogenetic analysis of eight human papillomavirus immortalized human keratinocyte cell lines, Int. J. Cancer 44:1124–1131.

    PubMed  CAS  Google Scholar 

  94. Debiec-Rychter, M., Zukowski, M. K., Wang, C. Y., and Wen, W. N., 1991, Chromosomal characterizations of human nasal and nasopharyngeal cells immortalized by human papillomavirus type 16 DNA. Cancer Genet. Cytogenet. 52:51–56.

    PubMed  CAS  Google Scholar 

  95. Paraskeva, C., Harvey, A., Finerty, S., and Powell, S. C., 1989, Possible involvement of chromosome 1 in in vitro immortalization: Evidence from progression of a human adenoma-derived cell line in vitro, Int. J. Cancer 43:743–746.

    PubMed  CAS  Google Scholar 

  96. Sugarawa, O., Oshimura, M., Koi, M., Annab, L. A., and Barrett, J. C., 1990, Induction of cellular senescence in immortalized cells by human chromosome 1, Science 247:707–710.

    Google Scholar 

  97. Atkin, B. N., 1986, Chromosome changes in preneoplastic and genital lesions, Branbury Rep. 21:303–310.

    Google Scholar 

  98. Atkin, B. N., 1986, Chromosome 1 aberrations in cancer, Cancer Genet. Cytogenet. 21:279–285.

    PubMed  CAS  Google Scholar 

  99. Sreekantaiah, C., De Braekeleer, M., and Hass, O., 1991, Cytogenetic findings in cervical carcinoma. A statistical approach, Cancer Genet. Cytogenet. 53:75–81.

    PubMed  CAS  Google Scholar 

  100. Popescu, N. C., and DiPaolo, J. A., 1989, Preferential sites for viral integration on mammalian genome, Cancer Genet. Cytogenet. 42:157–173.

    PubMed  CAS  Google Scholar 

  101. Popescu, N. C., Zimonjic, D., and DiPaolo, J. A., 1989, Viral integration, fragile sites, and proto-oncogenes in human neoplasia, Hum. Genet. 84:383–386.

    Google Scholar 

  102. Lazo, P., DiPaolo, J. A., and Popescu, N. C., 1989, Amplification of viral transforming genes of human papillomavirus-18 and its 5′ flanking sequences located near myc proto-oncogene in HeLa cells, Cancer Res. 49:4305–4310.

    PubMed  CAS  Google Scholar 

  103. Durst, M., Croce, C. M., Gissman, L., Schwarz, E., and Huebner, K., 1987, Papillomavirus sequences integrate near cellular oncogenes in some cervical carcinomas, Proc. Natl. Acad. Sci. USA 84:1070–1074.

    PubMed  CAS  Google Scholar 

  104. Paz-y-Mino, C., Ocampo, L., Narvaez, R., and Narvaez, L., 1992, Chromosome fragility in lymphocytes of women with cervical uterine lesions produced by human papillomavirus, Cancer Genet. Cytogenet. 59:173–176.

    PubMed  CAS  Google Scholar 

  105. Winkelstein, W., 1977, Smoking and cancer of the uterine cervix: Hypothesis, Am. J. Epidemiol. 106:257–259.

    PubMed  Google Scholar 

  106. Brinton, L. A., Schairer, C., Haenszel, W., Stolley, P., Lehman, H. F., Levine, R., and Savitz, D. A., 1986, Cigarette smoking and invasive cervical cancer, J.A.M.A. 255:3265–3269.

    PubMed  CAS  Google Scholar 

  107. Vessey, M. P., Lawless, M., McPherson, K., and Yeates, D., 1983, Neoplasia of the cervix uteri and contraception: A possible adverse effect of the pill, Lancet 2:930–934.

    PubMed  CAS  Google Scholar 

  108. Monsonego, J., Magdelenat, H., Catalan, F., Coscas, Y., Zerat, L., and Sastre, X., 1991, Estrogen and progesterone receptors in cervical human papillomavirus related lesions, Int. J. Cancer 48:533–539.

    PubMed  CAS  Google Scholar 

  109. Butterworth, C. E., Jr., Hatch, K. D., Macaluso, M., Cole, P., Säuberlich, H. E., Soong, S.-J., Borst, M., and Baker, V., 1992, Folate deficiency and cervical dysplasia. J.A.M.A. 267:528–533.

    PubMed  Google Scholar 

  110. Centers for Disease Control and Prevention, 1992, 1993 revised classification system for HIV infection and expanded surveillance case definition for AIDS among adolescents and adults, Morbid, Mortal. Week. Rep. 41(RR17):1–19.

    Google Scholar 

  111. Vermund, S. H., Kelley, K. F., Klein, R. S., and Feingold, A. R., 1991, High risk of human papillomavirus infection and cervical squamous intraepithelial lesions among women with symptomatic human immunodeficiency virus infection, Am. J. Obstet. Gynecol. 162:392–400.

    Google Scholar 

  112. Bernard, C., Mougin, C., Madoz, L., Drobacheff, C., van Landuyt, H., Laurent, R., and Lab, M., 1992, Viral co-infections in human papillomavirus-associated anogenital lesions according to the serostatus for the human immunodeficiency virus, Int. J. Cancer 52:731–737.

    PubMed  CAS  Google Scholar 

  113. Hildesheim, A., Mann, V., Brinton, L., Szklo, M., Reeves, W. C., and Rawls, W. E., 1991, Herpes simplex virus type 2: A possible interaction with human papillomavirus types 16/18 in the development of invasive cervical cancer, Int. J. Cancer 49:335–340.

    PubMed  CAS  Google Scholar 

  114. DiPaolo, J. A., 1983, Relative difficulties in transforming human and animal cells in vitro, Cancer Res. 70:3–8.

    CAS  Google Scholar 

  115. Garrett, L. R., Perez-Reyes, N., Smith, P. P., and McDougail, J. K., 1993, Interactions of HPV-18 and nitrosomethylurea in the induction of squamous cell carcinoma, Carcinogenesis 14:329–332.

    PubMed  CAS  Google Scholar 

  116. Feingold, A. R., Vermund, S. H., Burk, R. D., Kelley, K. F., Schrager, L. K., Schreiber, K., Munk, G., Friedland, G. H., and Klein, R. S., 1990, Cervical cytologie abnormalities and papillomavirus in women infected with human immunodeficiency virus. J. AIDS 3:896–903.

    CAS  Google Scholar 

  117. Pomerantz, R. J., de la Monte, S. M., Donnegan, S. P., Rota, T. R., Vogt, M. W., Craven, D. E., and Hirsch, M. S., 1988, Human immunodeficiency virus infection of the uterine cervix, Ann. Intern. Med. 108:321–327.

    PubMed  CAS  Google Scholar 

  118. Huemer, P. H., Larcher, C., Wachter, H., and Dierich, M. P., 1989, Prevalence of antibodies to human herpesvirus 6 in human immunodeficiency virus 1-seropositive and-negative intravenous drug addicts, J. Infect. Dis. 160:549–550.

    PubMed  CAS  Google Scholar 

  119. Levy, J. A., Greenspan, D., Ferro, E., and Lennette, E. R., 1990, Frequent isolation of HHV-6 from saliva and high seroprevalence of the virus in the population, Lancet 335:1047–1050.

    PubMed  CAS  Google Scholar 

  120. Chen, M., Popescu, N., Woodworth, C., Berneman, Z., Corbellino, M., Lusso, P., Ablashi, D. V., and DiPaolo, J. A., 1994, Human herpesvirus 6 infects cervical epithelial cells and transactivates human papillomavirus gene expression, J. Virol. 68:1173–1178.

    PubMed  CAS  Google Scholar 

  121. Riou, G. E., Barrois, M., Sheng, Z., Duvillard, P., and L’Homme, C., 1988, Somatic deletions and mutations of x-Ha-ras gene in human cervical cancers, Oncogene 3:329–333.

    PubMed  CAS  Google Scholar 

  122. DiPaolo, J. A., Woodworth, C. D., Popescu, N. C., Koval, D. L., Lopez, J. V., and Dongier, J., 1990, HSV-2-induced tumorigenicity in HPV16-immortalized human genital keratinocytes, Virology 177:777–779.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Woodworth, C.D., DiPaolo, J.A. (1995). Immortalization of Keratinocytes by Human Papillomaviruses. In: Barbanti-Brodano, G., Bendinelli, M., Friedman, H. (eds) DNA Tumor Viruses. Infectious Agents and Pathogenesis. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1100-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1100-1_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1102-5

  • Online ISBN: 978-1-4899-1100-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics