Skip to main content

Proper Elements and Stable Chaos

  • Chapter
From Newton to Chaos

Part of the book series: NATO ASI Series ((NSSB,volume 336))

Abstract

The long term evolution of the orbits of the asteroids is studied by means of proper elements, which are quasi-integrals of the motion. After a short review of the classical theories for secular perturbations, this paper presents the state of the art for the computation of proper elements. The recent theories have been extended to higher degree in the eccentricities and inclinations, and to the second order in the perturbing masses; they use new iterative algorithms to compute secular perturbations with fixed initial conditions but variable frequencies. This allows to compute proper elements stable over time spans of several million years, within a range of oscillations small enough to allow the identification of asteroid families; the same iterative algorithm can also be used to automatically detect secular resonances, that is to map the dynamical structure of the main asteroid belt. However the proper element theories approximate the true solution of the N-body problem with a conditionally periodic solution of a truncated problem, while the orbits of most asteroids are not conditionally periodic, but chaotic; positive Lyapounov exponents have been detected for a large number of real asteroids. The phenomenon of stable chaos occurs whenever the range of oscillations of the proper elements, as computed by state of the art theories, remains small for time spans of millions of years, while the Lyapounov time (in which the orbits diverge by a factor exp(1)) is much shorter, e.g. a few thousand years. This can be explained only by a theory which accounts correctly for the degeneracy of the unperturbed 2-body problem used as a first approximation. The two stages of computation of mean and proper elements are each subject to the phenomena of resonance and chaos; stable chaos occurs when a weak resonance affects the computation of mean elements, but the solution of the secular perturbation equations is regular.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arnold, V., 1976, “Méthodes Mathématiques de la Mécanique Classique”, MIR, Moscou.

    Google Scholar 

  • Baccili, S. and Cattaneo, L., 1993, Exam paper in “Advanced Mechanics”, University of Pisa.

    Google Scholar 

  • Benettin, G., Galgani, L. and Giorgilli, A., 1984, A proof of Kolmogorov theorem on invariant tori using canonical transformations without inversion, Nuovo Cimento, 79b, 201–223.

    Article  MathSciNet  Google Scholar 

  • Bretagnon, P., 1974, Termes à longues périodes dans le système solaire, Astron. Astrophys. 30, 141–154.

    ADS  MATH  Google Scholar 

  • Brouwer, D. 1951, Secular variations of the orbital elements of minor planets, Astron. J. 56, 9–32.

    Article  ADS  Google Scholar 

  • Carpino, M., Milani, A. and Nobili, A.M., 1987, Long—term numerical integrations and synthetic theories for the motion of the outer planets, Astron. Astrophys., 181, 182–194.

    ADS  MATH  Google Scholar 

  • Duriez, L., 1979, Approche d’une théorie générale planétaire en variables elliptiques héliocentriques, Ph.D. Thesis, Univ. Lille.

    Google Scholar 

  • Duriez, L., 1990, Le dévelopment de la fonction perturbatrice, in Modern methods in celestial mechanics, Benest, D. and Froeschlé, C. eds., Editions Frontières, Gif-sur Yvette, pp. 35–62.

    Google Scholar 

  • Farinella, P., Gonczi, R. and Froeschlé, Ch.,1993, Meteorites from the asteroid 6 Hebe, Celest. Mech., 56, 287–305.

    Article  ADS  Google Scholar 

  • Ferraz-Mello, S., 1994, The convergence domain of the laplacian expansion of the disturbing function, Cel. Mech., 58.

    Google Scholar 

  • Froeschlé, C., 1984, The Lyapounov characteristic exponents and applications to the dimension of the invariant manifolds of a chaotic attractor, in Stability of the solar system and its minor natural and artificial bodies, Szebehely, V. ed., Reidel, Dordrecht, 265–282.

    Google Scholar 

  • Henrard, J., 1990, A semi-numerical perturbation method for separable Hamiltonian systems, Celest. Mech. 49, 43–67.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Henrard, J., and Lemaitre, A. 1983, A second fundamental model for resonance, Celest. Mech. 30, 197–218.

    Article  MathSciNet  ADS  Google Scholar 

  • Hori, G., 1966, Theory of general perturbations with unspecified canonical variables, Publ. Astron. Soc. Japan 18, 287–296.

    ADS  Google Scholar 

  • Kneievié, Z., 1989, Asteroid long-periodic perturbations: the second order Hamiltonian, Celes. Mech. 46, 147–158.

    Article  ADS  Google Scholar 

  • Kneievié, Z., 1991, Asteroid long periodic perturbations; derivation of proper elements and assessment of their accuracy, Astron. Astrophys. 241, 267–288.

    ADS  Google Scholar 

  • Kneievié, Z., Carpino, M., Farinella, P., Froeschlé, C., Froeschlé, Ch., Gonczi, R., Jovanovie, B., Paolicchi, P. and Zappalà, V., 1988, Asteroid short-periodic perturbations and the accuracy of mean orbital elements, Astron. Astrophys. 192, 360–369.

    ADS  Google Scholar 

  • Kneievié, Z., Milani, A., Farinella, P., Froeschlè, Ch. and Froeschlè, C., 1991, Secular resonances from 2 to 50 AU, Icarus, 93, 316–330.

    Article  ADS  Google Scholar 

  • Kneievié, Z., Froeschlé, Ch., Lemaitre, A., Milani, A., and Morbidelli, A., 1994, Comparison of two theories for calculation of asteroid proper elements, in preparation.

    Google Scholar 

  • Kozai, Y. 1962, Secular perturbations of asteroids with high inclinations and eccentricities, Astron. J. 67, 591–598.

    Article  MathSciNet  ADS  Google Scholar 

  • Kozai,Y., 1979, The dynamical evolution of the Hirayama families, in Asteroids, Gehrels, T. ed. (Univ. of Arizona Press), pp. 334–358.

    Google Scholar 

  • Laskar, J., 1986, Secular terms of classical planetary theories using the results of general theory, Astron. Astrophys., 157, 59–70.

    MathSciNet  ADS  Google Scholar 

  • Lemaitre, A., and A. Morbidelli, 1994, Calculation of proper elements for high inclined asteroidal orbits, Celest. Mech., in press.

    Google Scholar 

  • Milani, A., 1988, Secular perturbations of planetary orbits and their representation as series, in Long Term Behaviour of Natural and Artificial N-Body Systems, Roy, A.E., editor, Kluwer, Dordrecht, 73–108

    Chapter  Google Scholar 

  • Milani, A., 1990, Perturbation methods in Celestial Mechanics, in Modern methods in celestial mechanics, Benest, D. and Froeschlé, C. eds., Editions Frontière, Gif-sur Yvette, pp. 109–150.

    Google Scholar 

  • Milani, A., 1991, Chaos in the three body problem, in Predictability, stability, and chaos in N-body dynamical systems, Roy, A.E. ed., Plenum, New York, pp. 11–33.

    Chapter  Google Scholar 

  • Milani, A. and Farinella, P., 1994, Chaos as a clock: the age of the Veritas asteroid family, submitted for publication.

    Google Scholar 

  • Milani, A., and Kneievié, Z., 1990, Secular perturbation theory and computation of asteroid proper elements, Celest. Mech. 49, 347–411.

    Article  ADS  MATH  Google Scholar 

  • Milani, A., and Kneievie, Z., 1992, Asteroid proper elements and secular resonances, Icarus 98, 211–232.

    Article  ADS  Google Scholar 

  • Milani, A., and Kneievié, Z., 1994, Asteroid proper elements and the dynamical structure of the asteroid belt, Icarus,in press.

    Google Scholar 

  • Milani, A. and Labianca, A., 1994, The radius of convergence of fixed frequency perturbation theories for the motion of the asteroids, in preparation.

    Google Scholar 

  • Milani, A., and A. M. Nobili 1992. An example of stable chaos in the solar system. Nature 357, 569–571.

    Article  ADS  Google Scholar 

  • Milani, A., Nobili, A.M. and Carpino, M. 1987, Secular variations of the semimajor axes: theory and experiments, Astron. Astrophys. 172, 265–279.

    ADS  MATH  Google Scholar 

  • Milani, A., Carpino, M., Hahn, G. and Nobili, A.M., 1989, Dynamics of planet-crossing asteroids: classes of orbital behaviour, Project SPACEGUARD, Icarus 78, 212–269.

    Article  ADS  Google Scholar 

  • Milani, A., Farinella, P. and Kneievié, Z., 1992, On the search for asteroid families, in Interrelations between Physics and Dynamics for Minor Bodies in the Solar System, D. Benest and C. Froeschlé eds., Editions Frontières, Gif-sur-Yvette, pp. 85–132.

    Google Scholar 

  • Milani, A., Bowell, E., Kneievié, Z., Lemaitre, A., Morbidelli,. A. and Muinonen, K., 1994a, A composite catalogue of asteroid proper elements, in Asteroids, Comets, Meteors 1993, Milani, A., Di Martino, M. and Cellino, A. eds., Kluwer, Dordrecht, in press.

    Google Scholar 

  • Milani, A., Nobili, A.M., and Kneievié, Z., 1994b, Stable chaos in the asteroid belt, in preparation.

    Google Scholar 

  • Morbidelli, A., and Henrard, J., 1991, Secular resonances in the asteroid belt: theoretical perturbation approach and the problem of their location, Celestial Mechanics, 51, 131–168.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Poincaré, H., 1884, Sur une généralisation des fractions continues, Comp. Rend. Acad. Sci. Paris 99, 1014–1016.

    Google Scholar 

  • Poincaré H. 1892–1899, Les Méthodes Nouvelles de la Méchanique Céleste,Vol. I, 1892; Vol. II, 1893; Vol. III, 1899; Gauthier-Villars, Paris (reprinted by Blanchard, Paris, 1987).

    Google Scholar 

  • Roy, A.E., 1982, The stability of N-body hierarchical dynamical systems, in Applications of modern dynamics to celestial mechanics and astrodynamics, Szebehely, V. ed., Kluwer, Dordrecht, pp. 103–130.

    Chapter  Google Scholar 

  • Williams, J.G., 1969, Secular perturbations in the Solar System, Ph.D. Thesis, Univ. California, Los Angeles.

    Google Scholar 

  • Williams, J.G., 1973, Meteorites from the asteroid belt? Eos, 54, 233.

    Google Scholar 

  • Williams, J.G., 1979, Proper orbital elements and family memberships of the asteroids, in Asteroids, Gehrels,T. ed., Univ.Arizona Press, pp. 1040–1063.

    Google Scholar 

  • Williams, J.G., 1989, Asteroid family identifications and proper elements, in Asteroids II, Binzel, R.P, Gehrels, T. and Matthews, M.S. eds., Univ.Arizona Press, Tucson, pp. 1034–1072.

    Google Scholar 

  • Williams, J.G., and Faulkner, J., 1981, The position of secular resonance surfaces, Icarus 46, 390–399.

    Article  ADS  Google Scholar 

  • Yuasa, M., 1973, Theory of secular perturbations of asteroids including terms of higher order and higher degree, Publ. Astron. Soc. Japan 25, 399–445.

    ADS  Google Scholar 

  • Zappalà, V., Cellino, A., Farinella, P. and Kneievié, Z., 1990, Asteroid families I: identification by hierarchical clustering and reliability assessment, Astron. J. 100, 2030–2046.

    Article  ADS  Google Scholar 

  • Zappalà, V., Cellino, A., Farinella, P. and Milani, A., 1994, Asteroid families. II. Extension to unnumbered multi-opposition asteroids, Astron. J. 107, 772–801.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Milani, A. (1995). Proper Elements and Stable Chaos. In: Roy, A.E., Steves, B.A. (eds) From Newton to Chaos. NATO ASI Series, vol 336. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1085-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1085-1_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1087-5

  • Online ISBN: 978-1-4899-1085-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics