Skip to main content

Moment Formalism for the Radiative Force Evaluation

  • Chapter
From Newton to Chaos

Part of the book series: NATO ASI Series ((NSSB,volume 336))

  • 424 Accesses

Abstract

We overview a theoretical scheme enabling evaluation of the radiative force acting on different celestial bodies (artificial satellites, interplanetary dust grains) based on the moment formalism introduced in the theory of radiative transfer. This approach allows an elegant and powerful algorithm for the radiative force investigation, in complex situations (e.g. the Earth shadow penumbra transitions). It accounts for the influence of general radiative field generated by an extended source with arbitrary surface emissivity. A number of tutorial computations of the simplified configurations already met in the literature are presented.

Recently, we have applied the moment formalism to the shadow penumbra theory in context of the artificial satellite dynamics. Here we follow several ideas generalizing previous model in different routes: towards the (i) first order terms in presumably small parameter υ/c (υ stands for the object velocity, while c for the velocity of light) generally known as the Poynting-Robertson terms, (ii) arbitrary distances from the planet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abramowicz, M. A., Ellis, G. F. R., and Lanza, A, 1991, Relativistic effects in superluminal jets and neutron star winds, Asiroph. J. 361: 470.

    Article  ADS  Google Scholar 

  • Barlier, F., Carpino, M., Farinella, P., Mignard, F., Milani, A., and Nobili, A. M, 1986, Non-gravitational perturbations on the semimajor axis of LAGEOS, Ann. Geophys. 4: 193.

    ADS  Google Scholar 

  • Burns, J. A., Lamy, P. L., and Soter, S, 1979, Radiation forces on small particles in the solar system, Icarus 40: 1.

    Article  ADS  Google Scholar 

  • Chandrasekhar, S, 1950, “Radiative Transfer”, Oxford Univ. Press, Oxford.

    Google Scholar 

  • Damour, T., Soffel, M., and Xu, Ch, 1991, General-relativistic celestial mechanics. I. Method and definition of reference systems, Phys. Rev. D43: 3273.

    MathSciNet  ADS  Google Scholar 

  • Fliegel, H. F., Gallini, T. E., and Swift, E. R., 1992, Global positioning system radiation force model for geodetic applications, J. Geoph. Res. 97: 559.

    Article  ADS  Google Scholar 

  • Guess, A, 1962, Poynting-Robertson effect for a spherical source of radiation, Astroph. J. 135: 855.

    Article  MathSciNet  ADS  Google Scholar 

  • Klinkrad, H., Koeck, Ch., and Renard, P, 1990, Precise satellite skin-force modelling by means of Monte-Carlo ray tracing, ESA Journal 14: 409.

    ADS  Google Scholar 

  • Lamy, P. L, 1974, Interaction of interplanetary dust grains with the solar radiation field, A and A 35: 197.

    ADS  Google Scholar 

  • Landau, L. D., and Lifschitz E. M, 1960, “Mechanics”, Addison-Wesley, Reading, Mass.

    MATH  Google Scholar 

  • Landau, L. D., and Lifschitz E. M, 1962, “The classical theory of fields”, Addison-Wesley, Reading, Mass.

    MATH  Google Scholar 

  • Link, F, 1933, Théorie photométrique des éclipses de Lune, Bull. astron. 8: 77.

    Google Scholar 

  • Lyttleton, R. A, 1976, Effects of solar radiation on the orbits of small particles, Astrophys. Space Sci. 44: 119.

    Article  ADS  Google Scholar 

  • Mihalas, D, 1970, “Stellar atmospheres”, W.H. Freeman and Co., San Francisco.

    Google Scholar 

  • Misner, Ch., Thorne, K. S., and Wheeler, J. A, 1973, “Gravitation”, W. H. Freeman and Co., San Francisco.

    Google Scholar 

  • Milani, A., Nobili, A. M., and Farinella, P, 1987, “ Non-gravitational perturbations and satellite geodesy”, A. Hilger, Bristol.

    Google Scholar 

  • Ries, J. C., Shum, C. K., and Tapley, B. D, 1992, Surface modeling for precision orbit determination, paper submitted to the IUGG XX General Assembly.

    Google Scholar 

  • Robertson, H. P, 1937, Dynamical effects of radiation in the solar system, Mon. Not. R. astr. Soc. 97: 423.

    ADS  MATH  Google Scholar 

  • Rubincam, D. P, 1988, Yarkovsky thermal drag on LAGEOS, J. Geoph. Res. 93: 13805.

    Article  ADS  Google Scholar 

  • Smith, D. E., and Dunn, P. J, 1980, Long term evolution of the LAGEOS orbit, Geophys. Res. Lett. 7: 437.

    Article  ADS  Google Scholar 

  • Thomas, L. H, 1930, The radiation field in a fluid in motion, Quart. J. Math. (Oxford) 1: 239.

    Article  ADS  Google Scholar 

  • Thorne, K. S, 1981, Relativistic radiative transfer: moment formalisms, Mon. Not. R. astr. Soc. 194: 439.

    MathSciNet  ADS  MATH  Google Scholar 

  • Hulst, H. C, 1957, “Light scattering by small particles”, J. Willey and Sons, New York.

    Google Scholar 

  • Van de Hulst, H. C, 1980, “Multiple Light Scattering (Tables, Formulas, and Applications)”, Academic Press, New York.

    Google Scholar 

  • Vokrouhlickÿ, D., and Karas, V, 1991, General relativistic effects in astrophysical jets, A and A 252: 835.

    ADS  Google Scholar 

  • Vokrouhlickÿ, D., Farinella, P., and Lucchesi, D, 1993a, Albedo perturbation models: General formalism and applications to LAGEOS, Celest. Mech. 57: 225.

    Article  ADS  Google Scholar 

  • Vokrouhlickÿ, D., Farinella, P., and Mignard, F, 1993b, Solar radiation pressure perturbations for Earth satellites: I. A complete theory including penumbra transitions, A and A 280: 295.

    ADS  Google Scholar 

  • Vokrouhlickÿ, D., Farinella, P., and Mignard, F, 1994a, Solar radiation pressure perturbations for Earth satellites: II. An approximative approach to the Earth shadow penumbra theory, A and A 285: 333.

    ADS  Google Scholar 

  • Vokrouhlickÿ, D., Farinella, P., and Mignard, F, 1994b, Radiative forces on a dust particle: A complex model for the planetary shadow penumbra phase, in preparation.

    Google Scholar 

  • Wickramasinghe, N. C, 1973, “Light scattering functions for small particles with applications in astronomy”, A. Hilger, London.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Vokrouhlický, D. (1995). Moment Formalism for the Radiative Force Evaluation. In: Roy, A.E., Steves, B.A. (eds) From Newton to Chaos. NATO ASI Series, vol 336. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1085-1_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1085-1_28

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1087-5

  • Online ISBN: 978-1-4899-1085-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics