Skip to main content

Modular Structures in Geometric Quantization

  • Chapter
  • 275 Accesses

Abstract

The purpose of this lecture is to show how certain modular structures, borrowed from the theory of von Neumann algebras, can be exploited to extract primary representations (prequantization) and irreducible representations (quantization) from the regular representation of the symmetry group of the physical systems to be considered. The emphasis is on presenting specific examples for which the solution is exhibited explicitly.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. M. Souriau, “Structure des systèmes dynamiques”, Dunod, Paris (1966)

    Google Scholar 

  2. A. Kirillov, “Eléments de la théorie des représentations”, Mir, Moscow (1974)

    Google Scholar 

  3. B. Kostant, “Quantization and unitary representations”, Lecture Notes in Mathematics 170, Springer, New York (1970); and in “Géometrie symplectique et Physique mathématique”, CNRS, Paris (1970).

    Google Scholar 

  4. D.J. Simms and N.M.J. Woodhouse, “Lectures in Geometric Quantization”, Lecture Notes in Physics 53, Springer, New York (1976)

    Google Scholar 

  5. V. Guillemin and S. Sternberg “Geometric Asymptotics”, Mathematical Surveys 14, AMS, Providence (1977); “Symplectic Techniques in Physics”, Cambridge Univ. Press, Cambridge (1984)

    Google Scholar 

  6. R. Abraham and J.E. Marsden, “Foundations of Mechanics”, Benjamin, Reading (1978)

    MATH  Google Scholar 

  7. J. Śniatycki, “Geometric Quantization and Quantum Mechanics”, App. Math. Sc. No. 30, Springer, New York (1980)

    Google Scholar 

  8. N.M.J. Woodhouse, “Geometric Quantization”, Clarendon Press, Oxford (1980)

    MATH  Google Scholar 

  9. P.A.M. Dirac, “The Principles of Quantum Mechanics”, Clarendon, Oxford (1930)

    MATH  Google Scholar 

  10. R.F. Streater, Canonical quantization, Commun. Math. Phys. 2: 354–374 (1966)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. I. E. Segal, Quantization in nonlinear systems, J. Math. Phys. 1: 468–488 (1960); 5: 269-282 (1964); see also: Symposia Mathematica 14: 9-117 (1974)

    Article  ADS  MATH  Google Scholar 

  12. G.G. Emch, Prequantization and KMS structures, Intern’l J. Theor. Phys. Phys. 20: 891–904 (1981); KMS structures in ggeometric quantization, Contemporary Mathematics 62: 175-186 (1987); Geometric quantization: Regular representations and modular algebras, in “Group Theoretical Methods in Physics (Moscow, 1990)”, V.V. Dodonov and V.I. Man’ko, eds., Springer, Heidelberg (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. S.T. Ali and G.G. Emch, Geometric quantization: Modular reduction theory and coherent states”, J. Math. Phys. 27: 2936–2943 (1986)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. F.J. Murray and J. von Neumann, On rings of operators, Ann. Math.(2) 37: 116–229 (1936); II, Trans. Amer. Math. Soc. 41: 208-248 (1937)

    Article  Google Scholar 

  15. F. J. Murray, The rings of operators papers, in “The Legacy of John von Neumann”, Proc. Symp. Pure Math. 50: 57–60 (1990)

    Article  Google Scholar 

  16. J. von Neumann, Zur Algebra der Funktionaloperationen und Theorie der normalen Operatoren, Math. Ann. 102: 370–427 (1929)

    Article  MATH  Google Scholar 

  17. J. Dixmier, “Les algèbres d’opérateurs dans l’espace hilbertien (Algèbres de von Neumann)”, Gauthier-Villars, Paris (1957); 2nd ed. (1969); and “Les C*-algèbres et leurs représentations”, Gauthier-Villars, Paris (1964)

    Google Scholar 

  18. S. Sakai, “C*-algebras and W*-algebras”, Ergebnisse der Mathematik und ihrer Grenzgebiete 60, Springer, Heidelberg (1971)

    Google Scholar 

  19. M. Takesaki, “Theory of Operator Algebras. I”, Springer, Heidelberg (1979)

    Book  MATH  Google Scholar 

  20. R. V. Kadison and Ringrose, “Fundamentals of the Theory of Operator Algebras. I”, Academic Press, New York (1983)

    Google Scholar 

  21. G.G. Emch, Quantum and classical mechanics on homogeneous Riemanian manifolds, J. Math. Phys. 23: 1785–1791 (1982)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. J. Bertrand, G.G. Emch and G. Rideau, The cohomology of the classical and quantum Weyl CCR in curved spaces, Lett. Math. Phys. (to appear)

    Google Scholar 

  23. G.W. Mackey, A theorem of Stone and von Neumann, Duke Math. J. 16: 313–326 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  24. S.T. Ali, A.M. El Gradechi and G.G. Emch, Modular algebras in geometric quantization, J. Math. Phys. 33: 6237–6243 (1994)

    Article  ADS  Google Scholar 

  25. A. M. El Gradechi and S. De Bièvre, Phase space quantum mechanics on the Anti-de Sitter spacetime and its Poincaré contraction, Ann. Phys. (NY) 235: 1–35 (1994)

    Article  MATH  Google Scholar 

  26. A.W. Knapp, “Representation Theory of Semisimple Lie Groups”, Princeton University Press, Princeton (1986)

    Google Scholar 

  27. M. Duflo and C.C. Moore, On the regular representation of a nonunimodular locally compact group, J. Fund. Analysis 21: 209–243 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  28. A. Grossmann, J. Morlet and T. Paul, Transforms associated to square integrable group representations. I, J. Math. Phys. 26: 2473–2479 (1985)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. M.E. Taylor, “Noncommutative Harmonic Analysis”, Mathematical Surveys and Monographs 22 (1986)

    Google Scholar 

  30. I. M. Gelfand and N.Ya. Vilenkin, “Generalized Functions. IV”, Academic Press, New York (1968).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Emch, G.G. (1995). Modular Structures in Geometric Quantization. In: Antoine, JP., Ali, S.T., Lisiecki, W., Mladenov, I.M., Odzijewicz, A. (eds) Quantization, Coherent States, and Complex Structures. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1060-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1060-8_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1062-2

  • Online ISBN: 978-1-4899-1060-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics