Skip to main content

Geometric Coherent States, Membranes, and Star Products

  • Chapter
Quantization, Coherent States, and Complex Structures

Abstract

An exact star product on symplectic-Kähler manifolds is constructed via quadrangle and hexagon membrane amplitudes. Coherent states and realization of the Dirac axioms over lagrangian submanifolds are described by triangle and pentagon membrane amplitudes. Relations between the star-product quantization and Dirac-type quantization are found.

This work was supported in part by the International Science Foundation and the Russian Foundation for Fundamental Research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. F. V. Anderson, The Weyl functional calculus, J. Fund. Anal. 4: 240–267 (1969).

    Article  MATH  Google Scholar 

  2. J. R. Klauder, Continuous representation theory. Generalized relation between quantum and classical dynamics, J. Math. Phys. 4: 1058 (1963)

    Article  MathSciNet  ADS  Google Scholar 

  3. A. M. Perelomov, Coherent states for arbitrary Lie group, Comm. Math. Phys. 26: 222 (1972)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. E. Onofri, A note on coherent state representations of Lie groups, J. Math. Phys. 16: 1087–1089 (1973)

    Article  MathSciNet  ADS  Google Scholar 

  5. S. Bergmann, The kernel functions and conformal mapping, Amer. Math. Soc, Math. Surveys 5 (1950)

    Google Scholar 

  6. F. A. Berezin, Covariant and contravariant symbols of operators, Izvestiya Akad. Nauk SSSR, Mat. 36: 1134–1167 (1972) (Russian)

    MathSciNet  MATH  Google Scholar 

  7. A. Odzijewicz, On reproducing kernels and quantization of states, Comm. Math. Phys. 114: 577–597 (1988)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. S. T. Ali and J.-P. Antoine, Quantum frames, quantization and dequantization, in: “Quantization and Infinite-Dimensional Systems, Proc. XII-th Coll. Geom. Methods in Physics, Bialowieza, July 1993”, J.-P. Antoine, S. T. Ali, W. Lisiecki, I. M. Mladenov, A. Odzijewicz (eds), Plenum, N.Y.& London 133–145 (1994)

    Google Scholar 

  9. J. M. Garcia-Bondia, Generalized Moyal quantization on homogeneous symplectic spaces, Contemp. Math. 134: 93–114 (1992)

    Article  Google Scholar 

  10. F. Bayen, M. Flato, C. Fronsdal, A. Lichnerowicz, and D. Sternheimer, Deformation theory and quantization, Ann. Phys. 111: 61–151 (1978)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. M. De Wilde and P. B. Lecomte, Existence of star products and of formal deformation of the Poisson Lie algebra of arbitrary symplectic manifolds, Lett. Math. Phys. 7: 487–496 (1983)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. H. Omori, Y. Maeda, and A. Yoshioka, Weyl manifolds and deformation quantization, Adv. Math. 85: 224–255 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  13. A. Connes, Non-commutative differential geometry, Publ. IHES 62: 257–360 (1986)

    Google Scholar 

  14. M. V. Karasev, Connections over lagrangian submanifolds and certain problems in semi-classical approximation, Zap. Nauchn. Sem. Leningrad Otdel. Mat. Inst. Steklov (LOMI) 172: 41–54 (1989) (Russian); English transl. in J. Sov. Math. 59: 1053-1062 (1992)

    MATH  Google Scholar 

  15. M. V. Karasev, Simple Quantization formula, in: “Symplectic Geom. and Math. Phys., Actes du colloque en l’honneur de J.-M. Souriau”, P. Donato, C. Duval, J. Elhadad, G.M. Tuynman (eds.), Birkhäuser, Boston 234–244 (1991)

    Chapter  Google Scholar 

  16. M. V. Karasev, Quantization by parallel translation. Global formula for semiclassical wave functions. in: “Quantum Field Theory, Quantum Mechanics and Quantum Optics, Proc. XVIII Intern. Coll. Group Theor. Meth. in Phys., Moscow, 1990”, Part I, Nova Sci. Publ., N.-Y. 189-192 (1991)

    Google Scholar 

  17. M. V. Karasev and M. B. Kozlov, Quantum and semiclassical representations over lagrangian submanifolds in su(2)*, so(4)*, su(1, 1)*, J. Math. Phys. 34: 4986–5006 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. M. V. Karasev and M. B. Kozlov, Representations of compact semisimple Lie algebras over lagrangian submanifolds, Funktsional Anal. i Prilozhen. 28 (nr.4): 16-27 (1994) (Russian); English transl. in Funct. Anal. & Appl.

    Google Scholar 

  19. M. V. Karasev, Integrals over membranes, transition amplitudes and quantization, Russ. J. Math. Phys. 1: 523–526 (1993)

    MathSciNet  MATH  Google Scholar 

  20. M. V. Karasev, Quantization by membranes and integral representations of wave functions, in: “Quantization and Infinite-Dimensional Systems, Proc. XII-th Workshop on Geom. Methods in Physics, Bialowieza, July 1993”, pp. 9–19; J.-P. Antoine, S. T. Ali, W. Lisiecki, I. M. Mladenov, A. Odzijewicz (eds.), Plenum, N. Y. & London (1994)

    Google Scholar 

  21. M. V. Karasev, Formulas for noncommutative products of functions in terms of membranes and strings. I, Russ. J. Math. Phys. 2: 445–462 (1994)

    MathSciNet  MATH  Google Scholar 

  22. M. V. Karasev, Quantization by means of two-dimensional surfaces (membranes). Geometrical formulas for wave functions, Contemp. Math. 179: 83–113 (1994)

    Article  MathSciNet  Google Scholar 

  23. J. J. Duistermaat and H. J. Heckman, On the variation in cohomology of the symplectic form of the reduced phase space, Invent. Math. 69: 259–268 (1982)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. A. Connes, M. Flato, and D. Sternheimer, Closed star products and cyclic cohomology, Lett. Math. Phys. 24: 1–12 (1992).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. A. Odzijewicz, Covariant and contravariant Berezin symbols of bounded operators, in: “Quantization and Infinite-Dimensional Systems, Proc. XII-th Coll. Geom. Methods in Physics, Bialowieza, July 1993”, pp. 99–108; J.-P. Antoine, S. T. Ali, W. Lisiecki, I. M. Mladenov, A. Odzijewicz (eds.), Plenum, N.Y. & London (1994)

    Google Scholar 

  26. M. Cahen, S. Gutt, and J. Rawnsley, Quantization of Kahler manifolds. Part I, J. Geom. Phys 7: 45–62 (1990); Part II, Trans. Amer. Math. Soc. 337: 73-98 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. M. Rieffel, Deformation quantization of Heisenberg manifolds, Comm. Math. Phys. 122: 531–562 (1989)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. H. Omori, Report at the Conference “Symplectic Geometry and Applications”, Sanda, Japan, July 1993

    Google Scholar 

  29. M. V. Karasev, Poisson algebras of symmetries and asymptotics of spectral series, Funktsional. Anal. i Prilozhen. 20(nr.1): 21–32 (1986) (Russian); English transl. in Funct. Anal. & Appl. 20 (1986)

    MathSciNet  Google Scholar 

  30. M. V. Karasev, Quantization and coherent states over lagrangian submanifolds. Russ. J. Math. Phys. 3: 393–400 (1995).

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Karasev, M. (1995). Geometric Coherent States, Membranes, and Star Products. In: Antoine, JP., Ali, S.T., Lisiecki, W., Mladenov, I.M., Odzijewicz, A. (eds) Quantization, Coherent States, and Complex Structures. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1060-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1060-8_20

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1062-2

  • Online ISBN: 978-1-4899-1060-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics