Skip to main content

Abstract

The relationship between coherent states and geodesics is emphasized. It is found that CL 0 = Σ0, where CL 0 is the cut locus of 0 and Σ0 is the locus of coherent vectors othogonal to 0 >. The result is proved for manifolds on which the exponential from the Lie algebra to the Lie group equals the geodesic exponential. The conjugate loci on hermitian symmetric spaces are analyzed also in the context of the coherent state approach. The results are illustrated on the complex Grassmann manifold.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. R. Klauder, B. S. Skagerstam (Eds.), “Coherent States”, Word Scientific, Singapore (1985)

    MATH  Google Scholar 

  2. S. Berceanu, From quantum mechanics to classical mechanics and back, via coherent states, in “Quantization and Infinite-Dimensional Systems (Proc. Bialowieza 1994)”, p. 155, J-P. Antoine et al. (eds.), Plenum Press, New York (1994).

    Chapter  Google Scholar 

  3. A. M. Perelomov, Coherent states for arbitrary Lie groups, Commun. Math. Phys. 26: 222 (1972)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. J. R. Rawnsley, Coherent states and Kähler manifolds, Quart. J. Math. Oxford 28: 403 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  5. B. Kostant, Quantization and unitary representations, in: “Lecture Notes in Mathematics”, Vol 170, p. 87; C. T. Taam (ed.), Springer-Verlag, Berlin (1970)

    Google Scholar 

  6. V. Ceausescu, A. Gheorghe, Classical limit and quantization of Hamiltonian systems, in: “Symmetries and Semiclassical Features of Nuclear Dynamics”, Lecture Notes in Physics, Vol 279, p. 69; Springer-Verlag, Berlin (1987)

    Chapter  Google Scholar 

  7. S. Berceanu, L. Boutet de Monvel, Linear dynamical systems, coherent state manifolds, flows and matrix Riccati equation, J. Math. Phys. 34: 2353 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. S. Kobayashi, K. Nomizu, “Foundations of Differential Geometry”, Vol II, Interscience, New York (1969)

    MATH  Google Scholar 

  9. S. Helgason, “Differential Geometry, Lie groups and Symmetric Spaces”, Academic Press, New York (1978)

    MATH  Google Scholar 

  10. Y. C. Wong, Differential Geometry of Grassmann manifolds, Proc. Nat. Acad. Sci. U.S.A. 57: 589 (1967)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Y. C. Wong, Conjugate loci in Grassmann manifold, Bull Am. Math. Soc. 74: 240 (1968)

    Article  MATH  Google Scholar 

  12. T. Sakai, On cut loci on compact symmetric spaces, Hokkaido Math. J. 6: 136 (1977)

    MathSciNet  MATH  Google Scholar 

  13. S. Kobayashi, On conjugate and cut loci, in “Global Differential Geometry”, M.A.A. Studies in Mathematics, 27, S. S. Chern (ed.), p. 140 (1989)

    Google Scholar 

  14. S. Berceanu, The coherent states: old geometrical methods in new quantum clothes, preprint Bucharest, Institute of Atomic Physics, FT-398-1994

    Google Scholar 

  15. V. Guillemin, S. Sternberg, “Symplectic Technics in Physics”, Cambridge University, Cambridge (1984)

    Google Scholar 

  16. A. Odzijewicz, Coherent states and geometric quantization, Commun. Math. Phys. 150: 385 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. F. Hirzebruch, “Topological Methods in Algebraic Geometry”, Springer-Verlag, Berlin (1966).

    Book  MATH  Google Scholar 

  18. H. Woodhouse, “Geometric Quantization”, Oxford University, Oxford (1980)

    MATH  Google Scholar 

  19. A. W. Knapp, “Representation Theory of Semisimple Lie Groups”, Princeton University Press, Princeton (1986)

    Google Scholar 

  20. B. Shiffman, A. J. Sommese, “Vanishing Theorems on Complex Manifolds”, Progress in Mathematics, Vol. 56, Birkhäuser, Boston (1985)

    Google Scholar 

  21. P. Griffith, J. Harris, “Principles of Algebraic Geometry”, Wiley, New-York (1978)

    Google Scholar 

  22. S. Berceanu, A. Gheorghe, On the construction of perfect Morse functions on compact manifolds of coherent states, J. Math. Phys. 28: 2899 (1987)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. M. Cahen, S. Gutt, J. Rawnsley, Quantization on Kähler manifolds, 11, Trans. Math. Soc. 337: 73 (1993)

    MathSciNet  MATH  Google Scholar 

  24. R. Crittenden, Minimum and conjugate points in symmetric spaces, Canad. J. Math. 14: 320 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  25. A. Thimm, Integrable geodesic flows on homogeneous spaces, Ergod. Theory Dyn. Syst. 1: 495 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  26. O. Kowalski, “Generalized Symmetric Spaces”, Lecture Notes in Mathematics 805, Springer-Verlag, Berlin (1980)

    Google Scholar 

  27. R. Montgomery, Isoholonomic problems and some applications, Comm. Math. Phys. 128: 565 (1990)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. H. H. Wu, “The Equidistribution Theory of Holomorphic Curves”, Annals of Maths. Studies 164, Princeton Univ. Press, Princeton (1970)

    Google Scholar 

  29. A. Cayley, A sixth memoir upon quantics, Phil. Trans. Royal. Soc. London. 149: 61 (1859).

    Article  Google Scholar 

  30. S. Berceanu, On the geometry of complex Grassmann manifold, its noncompact dual and coherent states (in preparation)

    Google Scholar 

  31. S. S. Chern, “Complex Manifolds without Potential Theory”, Van Nostrand, Princeton (1967)

    MATH  Google Scholar 

  32. L. C. Pontrjagin, Charakteristiceskie tzikly differentziruemyh mnogobrazia, Mat. sb. 21: 233 (1947)

    Google Scholar 

  33. F. P. Gantmacher, “Teoria Matritz”, Nauka, Moskwa (1966)

    Google Scholar 

  34. Y. C. Wong, A class of Schubert varieties, J. Diff. Geom. 4: 37 (1970)

    MATH  Google Scholar 

  35. D. Husemoller, “Fibre Bundles”, Mc Graw-Hill, New York (1966)

    Book  MATH  Google Scholar 

  36. C. Jordan, Sur la géométrie à n dimensions, Bull. Soc. Math. France t. III: 103 (1875)

    Google Scholar 

  37. B. Rosenfel’d, Vnnutrenyaya geometriya mnojestva m-mernyh ploskastei n-mernova ellipticeskovo prostranstva, Izv. Akad. Nauk. SSSR, ser. mat. 5: 353 (1941)

    MathSciNet  Google Scholar 

  38. B. Rosenfel’d, “Mnogomernye Prostranstva”, Nauka, Moskwa (1966); “Neevklidovy Prostranstva”, Nauka, Moskwa (1969).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Berceanu, S. (1995). Coherent States and Global Differential Geometry. In: Antoine, JP., Ali, S.T., Lisiecki, W., Mladenov, I.M., Odzijewicz, A. (eds) Quantization, Coherent States, and Complex Structures. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1060-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1060-8_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1062-2

  • Online ISBN: 978-1-4899-1060-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics