Skip to main content

Endothelin as a Mediator of Blood-Brain Barrier Function

  • Chapter
New Concepts of a Blood—Brain Barrier

Abstract

Brain capillary endothelial cells (BCEC), the principal components of the blood—brain barrier (BBB) are interconnected by tight junctions, possess polar membranes and a paucity of pinocytotic vesicles in contrast to capillaries in peripheral organs.1 BCEC’s unique features embrace specialized transport and carrier systems as well as enzymes associated with various metabolic pathways that are essential to sustain the dynamic homeostasis of the brain. Many of these processes are thought to be neuronally regulated. There are a number of excellent reviews regarding the specific function of the BBB and regulation of the cerebral circulation by endothelium.2–4 It is now widely accepted that BCEC not only constitute a permeability barrier to ions and organic molecules (e.g., water, electrolytes, proteins, neurotransmitters), but are also an important secretory organ. BCEC produce agents and factors that may be involved in autocrine and paracrine regulation of the microvascular function of the brain. In general, the substances [e.g., prostacyclin, nitric oxide (NO), and adenosine] produced by these cells are considered to be cytoprotective. However, several other agents which are formed in BCEC and when released in excess may impair perfusion, alter BBB permeability and/or mediate cellular injury (i.e., endothelin I, angiotensin II, thromboxane, leukotrienes, platelet—activating factor, and Superoxide radicals). The secretory function of BCEC can also be modulated by substances released from adjacent cellular elements (other vascular cells, blood and/or brain). There is ample evidence that many of these events play a role in regulating vascular tone, permeability, hemostasis and blood pressure under normal conditions. However, in some pathologic conditions an “oversupply” of some of these agents may adversely affect the BBB permeability and/or surface expression of adhesion molecules (i.e., ICAM—1, VCAM—1, P—selectin) which facilitate binding and ultimately extravasation of circulating leukocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S.I. Rapport. “Blood — Brain Barrier in Physiology and Medicine,” Raven Press, New York (1976).

    Google Scholar 

  2. A.L. Betz, and G.W. Goldstein. Specialized properties and solute transport in brain capillaries. Ann. Rev. Physiol. 48:241 (1986).

    Article  CAS  Google Scholar 

  3. F. Joo. The blood—brain barrier in vitro: the second decade. Neurochem. Int. 23:499 (1993).

    Article  PubMed  CAS  Google Scholar 

  4. F.M. Faraci. Regulation of the cerebral circulation by endothelium. Pharmac. Ther. 56:1 (1992).

    Article  CAS  Google Scholar 

  5. F. Bacic, S. Uematsu, R.M. McCarron, and M. Spatz. Secretion of immunoreactive endothelin—1 by capillary and microvascular endothelium of human brain. Neurochem. Res. 17:699 (1992).

    Article  PubMed  CAS  Google Scholar 

  6. M. Spatz, D.B. Stanimirovic, S. Uematsu, and R.M. McCarron. Vasoconstrictive peptides induce endothelin—1 and prostanoids in human cerebromicrovascular endothelium. Arn. J. Physiol. 266:C654 (1994).

    CAS  Google Scholar 

  7. D.B. Stanimirovic, T. Yamamoto, S. Uematsu, and M. Spatz. Endothelin—1 receptor binding and cellular signal transduction in cultured human brain endothelial cells. J. Neurochem. 62:592 (1993).

    Article  Google Scholar 

  8. D.B. Stanimirovic, R.M. McCarron, and M. Spatz. Dexamethasone downregulated endothelin receptors in human cerebromicrovascular endothelial cells. Neuropeptides 26:145 (1994).

    Article  PubMed  CAS  Google Scholar 

  9. N. Kawai, T. Yamamoto, H. Yamamoto, R.M. McCarron, and M. Spatz. Endothelin stimulates ATPase activity in brain capillary endothelium. J. Physiol. (Lond). 480:17P (1994).

    Google Scholar 

  10. D.B. Stanimirovic, R.M. McCarron, N. Bertrand, and M. Spatz. Endothelins release 51Cr from culture human cerebromicrovascular endothelium. Biochem. Biophys. Res. Commun. 26:1 (1993).

    Article  Google Scholar 

  11. R.M. McCarron, L. Wang, D.B. Stanimirovic, and M. Spatz. Endothelin induction of adhesion molecule expression on human brain microvascular endothelial cells. Neurosci. Lett. 156:31 (1993).

    Article  PubMed  CAS  Google Scholar 

  12. R.M. McCarron, L. Wang, D.B. Stanimirovic, and M. Spatz. Differential regulation of adhesion molecule expression by human cerebrovascular and umbilical vein endothelial cells. Endothelium (1994) (in press).

    Google Scholar 

  13. M. Yanagisawa, H. Kurihara, S. Kimura, et al. Endothelin: a novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 332:411 (1988).

    Article  PubMed  CAS  Google Scholar 

  14. A. Inoue, M. Yanagisawa, S. Kimura, et al. The human endothelin family: three structurally and pharmacologically distinct isopeptides predicted by three separate genes. Proc. Natl. Acad. Sci. USA 86:2853 (1989).

    Article  Google Scholar 

  15. G.M. Rubany, and L.H. P. Botelho. Endothelins. FASEB J. 5:2713 (1991).

    Google Scholar 

  16. W.M. MacCumber, A.C. Ross, and H.S. Snyder. Endothelin in the brain: receptors, mitogenesis, and biosynthesis in glial cells. Proc. Natl. Acad. Sci. USA 87:2359 (1990).

    Article  PubMed  CAS  Google Scholar 

  17. H. Ehrenreich, H.J. Kehrl, W.R. Anderson, et al. A vasoactive peptide, endothelin—3, is produced by and specifically binds to primary astrocytes. Brain Res. 538:54 (1991).

    Article  PubMed  CAS  Google Scholar 

  18. A. Giaid, J.S. Gibson, T.M. Herrero, et al. Topographical localisation of endothelin mRNA and peptide immunoreactivity in neurones of the human brain. Histochemistry 95:303 (1991).

    Google Scholar 

  19. W.C. Sessa, S. Kaw, M. Hecker, and J.R. Vane. The biosynthesis of endothelin—1 by human polymorphonuclear leukocytes. Biochem. Biophys. Res. Commun. 147:613 (1991).

    Article  Google Scholar 

  20. P.O. Couraud, O. Durieu-Trautmann, D.L. Nguyen, P. Marin, F. Gilbert, and A.D. Strosberg. Functional endothelin—1 receptors in rat astrocytoma C6. Eur. J. Pharmacol. 206:191 (1991).

    Article  PubMed  CAS  Google Scholar 

  21. P.A. Revest, N.J. Abbott, and J.I. Gillespie. Receptor — mediated changes in intracellular [Ca2+] in cultured rat brain capillary endothelial cells. Brain Res. 549:159 (1991).

    Article  PubMed  CAS  Google Scholar 

  22. P. Vigne, A. Ladoux, and C. Frelin. Endothelins activate Na+/H+ exchange in brain capillary endothelial cells via a high—affinity endothelin—3 receptor that is not coupled to phospholipase C. J. Biol. Chem. 266:5925 (1991).

    PubMed  CAS  Google Scholar 

  23. J. Chopra, J.H. Joist, R.O. Webster. Loss of 51chromium, lactate dehydrogenase, and 111indium as indicators of endothelial cell injury. Lab. Invest. 57:578 (1987).

    PubMed  CAS  Google Scholar 

  24. A. Villacara, M. Spatz, R.F. Dodson, C. Corn, and J. Bembry. Effect of arachidonic acid on cultured cerebromicrovascular endothelium: Permeability, lipid peroxidation and membrane “fluidity”. Acta Neuropathol. 78:310(1989).

    Article  PubMed  CAS  Google Scholar 

  25. R.M. McCarron, S. Uematsu, S. Merkel, D. Long, J. Bembry, and M. Spatz. The role of arachidonic acid and oxygen radicals on cerebromicrovasculature endothelial permeability. Acta Neurochem. Suppl. 51:61 (1990).

    CAS  Google Scholar 

  26. P. Vigne, L. Lund, and C. Frelin. Cross—talk among cyclic AMP, cyclic GMP, and Ca2+—dependent intracellular signalling mechanisms in brain capillary endothelial cells. J. Neurochem. 62:2269 (1994).

    Article  PubMed  CAS  Google Scholar 

  27. A. Ermisch. Peptide receptors of the blood—brain barrier and substrate transport into the brain. Prog. Brain Res. 91:155 (1992).

    Article  PubMed  CAS  Google Scholar 

  28. J. Widimsky Jr., K. Horky, and J. Dvorakova. Plasma endothelin—1, — 2 levels in mild and severe hypertension. J. Hypertens. 9 (Suppl. 6):S194 (1991).

    Article  Google Scholar 

  29. R. Suzuki, H. Masaoka, Y. Hirata, et al. The role of endothelin — 1 in the origin of cerebral vasospasm in patients with aneurysmal subarachnoid hemorrhage. J. Neurosurg. 77:96 (1992).

    Article  PubMed  CAS  Google Scholar 

  30. A.A. Khraibi, D.M. Heublein, and F.G. Knox. Increased plasma level of endothelin — 1 in the Okamoto spontaneously hypertensive rat. Mayo Clin. Proc. 68:42 (1993).

    Article  PubMed  CAS  Google Scholar 

  31. F.C. Barone, M.Y.-T. Globus, W.J. Price, et al. Endothelin levels increase in rat focal and global ischemia. J. Cereb. Blood Flow and Metab. 14:337 (1994).

    Article  CAS  Google Scholar 

  32. J. Vane, E.E. Anggard, and R.M. Botting. Regulatory functions of the vascular endothelium. N. Engl. J. Med. 323:27 (1990).

    Article  PubMed  CAS  Google Scholar 

  33. I.M. Macrae, M.I. Robinson, D.I. Graham, J.L. Reid, and J. McCulloch. Endothelin—1 reduction in cerebral blood flow: dose—dependency, time course and neuropathological consequences. J. Cereb. Blood Flow and Metab. 13:276(1993).

    Article  CAS  Google Scholar 

  34. G.Z. Feuerstein, J.L. Gu, E.H. Olshtein, E.C. Barone, and I.L. Yue. Selective endothelin receptor (ETA) antagonist is neuroprotective in gerbil transient forebrain ischemia. Stroke 25:264 (1994).

    Google Scholar 

  35. J.G. Filep, M.G. Sirois, E. Foldes-Filip, et al. Enhancement by endothelin — 1 of microvascular permeability via the activation of ETA receptors. Br. J. Pharmacol. 109:880 (1993).

    Article  PubMed  CAS  Google Scholar 

  36. A. Halim, N. Kanayama, E.E. Maradny, K. Maehara, and T. Terao. Coagulation in vivo microcirculation and in vitro caused by endothelin — 1. Thromb. Res. 72:203 (1993).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Spatz, M., Stanimirovic, D., McCarron, R.M. (1995). Endothelin as a Mediator of Blood-Brain Barrier Function. In: Greenwood, J., Begley, D.J., Segal, M.B. (eds) New Concepts of a Blood—Brain Barrier. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1054-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1054-7_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1056-1

  • Online ISBN: 978-1-4899-1054-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics