Skip to main content

Development of the Blood-Brain Barrier

  • Chapter

Abstract

The experiments leading to the concept of a vascular blood-brain barrier date back more than 100 years, when Paul Ehrlich and his collaborators discovered in a series of experiments that certain dyes, when injected into the vascular system, were rapidly taken up by all organs with the exception of the brain (Ehrlich, 1904). Ehrlich himself interpreted these findings as a lack of affinity of nervous tissue for these dyes and found it hard to believe that the cerebral vascular endothelium might be selective. However, shortly afterwards, Goldmann (1913), an associate of Ehrlich, could show that the very same dyes, when injected into the cerebrospinal fluid, readily stained neural tissue but were incapable of staining all the other organs. Thus it became clear that these dyes were indeed prevented from getting access to the blood circulation. The concept of a vascular blood-brain barrier, which also functions as a brain-blood barrier was born (Bradbury, 1984; Bradbury, 1979). It remained controversial until 70 years later Reese and Karnovsky (1967) and Brightman and Reese (1969) were able to ultrastructurally locate the barrier. They showed that in mammals horseradish peroxidase, a small molecule of 40 kDa was prevented from passing between endothelial cells by tight junctions connecting most brain endothelial cells.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Achen, M.G., Clauss, M., Schnürch, H. and Risau, W. 1995. The non-receptor tyrosine kinase Lyn is localised in the developing blood-brain barrier. Differentiation (In Press).

    Google Scholar 

  • Albrecht, U., Seulberger, H., Schwarz, H., and Risau, W. 1990a. Correlation of blood-brain-barrier function and HT7 protein distribution in chick brain circumventricular organs. Brain Research 535:49–61.

    Article  PubMed  CAS  Google Scholar 

  • Anderson, J. M., Stevenson, B. R., Jesaitis, L. A., Goodenough, D. A., and Mooseker, M. S. 1988. Characterization of ZO-1, a protein component of the tight junction from mouse liver and Madin-Darby canine kidney cells. J. Cell Biol. 106:1141–1149.

    Article  PubMed  CAS  Google Scholar 

  • Arthur, F. E., Shivers, R. R. and Bowman, P. D. 1987. Astrocyte-mediated induction of tight junctions in brain capillary endothelium: an efficient in vitro model. Dev. Brain Res. 36:155–159.

    Article  Google Scholar 

  • Bär, T. 1980. The vascular system of the cerebral cortex. Adv. Anat. Embryol. Cell Biol. 59:1–62.

    Article  Google Scholar 

  • Bauer, H. C., Bauer, A., Lametschwandtner, A., Amberger, A., Ruiz, P. and Steiner, M. 1993. Neovascularization and the appearance of morphological characteristics of the blood-brain barrier in the embryonic mouse central nervous system. Brain Res. Dev. Brain Res. 75:269–278.

    Article  PubMed  CAS  Google Scholar 

  • Betz, A. L. 1986. Transport of ions across the blood-brain barrier. Federation Proc. 45:2050–2054.

    CAS  Google Scholar 

  • Betz, A. L. and Goldstein, G. W. 1978. Polarity of the blood-brain barrier: neutral amino acid transport into isolated brain capillaries. Science 202:225–227.

    Article  PubMed  CAS  Google Scholar 

  • Betz, A. L. and Goldstein, G. W. 1986. Specialized properties and solute transport in brain capillaries. Ann. Rev. Physiol. 48:241–250.

    Article  CAS  Google Scholar 

  • Bouchaud, C. and Bosler, O. 1986. The circumventricular organs of the mammalian brain with special reference to monoaminergic innervation. Int. Rev. Cytol. 105:283–327.

    Article  PubMed  CAS  Google Scholar 

  • Bradbury, M. W. B. 1979. The concept of a blood-brain barrier. J. Wiley & Sons.

    Google Scholar 

  • Bradbury, M.W. B. 1984. The structure and function of the blood-brain barrier. Fed. Proc. 43:186–191.

    PubMed  CAS  Google Scholar 

  • Breier, G., Albrecht, U., Sterrer, S. and Risau, W. 1992. Expression of vascular endothelial growth-factor during embryonic angiogenesis and endothelial-cell differentiation. Development 114:521–532.

    PubMed  CAS  Google Scholar 

  • Brightman, M. W. and Reese, T. S. 1969. Junctions between intimately apposed cell membranes in the vertebrate brain. J. Cell Biol. 40:648–677.

    Article  PubMed  CAS  Google Scholar 

  • Butt, A. M, Jones, H. C. and Abbott, N. J. 1990. Electrical resistance across the blood-brain barrier in anaesthetized rats: A developmental study. J. Physiol. 429:47–62.

    PubMed  CAS  Google Scholar 

  • Cereijido, M, González-Mariscal, L. and Contreras, B. 1989. Tight junction: barrier between higher organisms and environment. NIPS 4:72–75.

    Google Scholar 

  • Citi, S., Sabanay, H., Jakes, R., Geioger, B. and Kendrick-Jones, J. 1988. Cingulin, a new peripherlal component of tight junctions. Nature 333:272–275.

    Article  PubMed  CAS  Google Scholar 

  • Citi, S. 1993. The molecular-organization of tight junctions. J. Cell Biol. 121:485–489.

    Article  PubMed  CAS  Google Scholar 

  • Claude, P. and Goodenough, D. A. 1973. Fracture faces of zonulae occludentes from “tight” and “leaky” epithelia. J. Cell Biol. 58:390–400.

    Article  PubMed  CAS  Google Scholar 

  • Conn, G., Bayne, M. L., Soderman, D. D., Kwok, P. W., Sullivan, K. A., Palisi, T. M., Hope, D. A. and Thomas K. A. 1990a. Amino-acid and cDNA sequences of a vascular endothelial-cell mitogen that is homologous to platelet-derived growth-factor. Proc. Natl. Acad. Sci. USA 87:2628–2632.

    Article  PubMed  CAS  Google Scholar 

  • Conn, G., Soderman, D. D., Schaeffer, M. T., Wile, M., Hatcher, V. B., and Thomas, K. A. 1990b. Purification of a glycoprotein vascular endothelial-cell mitogen from a rat glioma-derived cell-line. Proc. Natl. Acad. Sci. USA 87:1323–1327.

    Article  PubMed  CAS  Google Scholar 

  • Coomber, B. L., Stewart, P. A., Hayakawa, K., Farrell, C. L., and Del Maestro, R. F. 1987. Quantitative morphology of human glioblastoma multiforme microvessels: structural basis of blood-brain barrier defect. J. Neuro-Oncol. 5:299–307.

    Article  CAS  Google Scholar 

  • Cordon-Cardo, C., O’Brien, J. P., Casals, D., Rittman-Grauer, L., Biedler, J. L., Melamed M. R. and Bertino, J. R. 1989. Multidrug-resistance gene (P-glycoprotein) is expressed by endothelial cells at blood-brain barrier sites. Proc. Natl. Acad. Sci. USA 86:695–698.

    Article  PubMed  CAS  Google Scholar 

  • Crone, C. and Olesen, S.-P. 1982. Electrical resistance of brain microvascular endothelium. Brain Res. 241:49–55.

    Article  PubMed  CAS  Google Scholar 

  • De Vries C., Escobedo, J. A., Ueno, H., Houck, K., Ferrara, N., and Williams, L.T. 1992. The fms-like tyrosine kinase, a receptor for vascular endothelial growth factor. Science 255:989–991.

    Article  PubMed  Google Scholar 

  • Dehouck, B., Dehouck, M.P., Fruchart, J-C. and Cecchelli, R. 1994. Upregulation of the low density lipoprotein receptor at the blood-brain barrier: intercommunications between brain capillary endothelial cells and astrocytes. J. Cell. Biol. 126:465–473.

    Article  PubMed  CAS  Google Scholar 

  • Dehouck, M. P., Meresse, S., Delorme, P., Fruchart, J. C., and Cecchelli, R. 1990b. An easier, reproducible, and mass-production method to study the blood-brain-barrier in vitro. J. Neurochem. 54:1798–1801.

    Article  PubMed  CAS  Google Scholar 

  • Dermietzel, R. and Krause, D. 1991. Molecular anatomy of the blood-brain-barrier as defined by immunocytochemistry. Int. Review Cytol. 127:57–109.

    Article  CAS  Google Scholar 

  • Drenckhahn, D. and Dermietzel, R. 1988. Organization of the actin filament cytoskeleton in the intestinal brush border: a quantitative and qualitative immunoelectron microscope study. J. Cell Biol. 107:1037–1048.

    Article  PubMed  CAS  Google Scholar 

  • Duffy, K. R. and Pardridge, W. M. 1987. Blood-brain barrier transcytosis of insulin in developing rabbits. Brain Res. 420:32–38.

    Article  PubMed  CAS  Google Scholar 

  • Dwyer, K. J. and Pardridge, W. M. 1993. Developmental modulation of blood-brain-barrier and choroid-plexus glut 1 glucose transporter messenger-ribonucleic-acid and immunoreactive protein in rabbits. Endocrinology 132:558–565.

    Article  PubMed  CAS  Google Scholar 

  • Ehrlich, P. 1904. Über die Beziehung chemischer Constitution, Vertheilung, und pharmakologischer Wirkung. Gesammelte Arbeiten zur Immunitätsforschimg, Berlin.

    Google Scholar 

  • Emoto, N., Gonzalez, A., Walicke, P. A., Wada, E. D. Simmons, M., Shimasaki, S., and Baird, A. 1989. Basic fibroblast growth factor (FGF) in the central nervous system: Identification of specific loci of basic FGF expression in the rat brain. Growth factors 2:21–29.

    Article  PubMed  CAS  Google Scholar 

  • Engelhardt, B., Conley, F.K., Butcher, E.C. 1994. Cell adhesion molecules on vessels during inflammation in the mouse central nervous system (CNS). J. Neuroimmunol. 51:199–208.

    Article  PubMed  CAS  Google Scholar 

  • Evans, H. M. 1909. On the development of the aortae, cardinal and umbilical veins, and the other blood vessels of vertebrate embryos from capillaries. Anat. Rec. 3:498–519.

    Article  Google Scholar 

  • Ferrara, N. and Henzel, W. J. 1989. Pituitary follicular cells secrete a novel heparin-binding growth-factor specific for vascular endothelial-cells. Biochem. Biophys. Res. Comm. 161:851–858.

    Article  PubMed  CAS  Google Scholar 

  • Fleming, T. P., Hay, M., Javed, Q., and Citi, S. 1993. Localization of tight junction protein cingulin is temporally and spatially regulated during early mouse development. Development 117:1135–1144.

    PubMed  CAS  Google Scholar 

  • Folkman, J. and Klagsbrun, M. 1987. Angiogenic factors. Science 235:442–447.

    Article  PubMed  CAS  Google Scholar 

  • Furuse, M., Hirase, T., Itoh, M., Nagafuchi, A., Yonemura, S., Tsukita, S. and Tsukita, S. 1993. Occludin: A novel integral membrane protein localizing at tight junctions. J. Cell. Biol. 123:1777–1788.

    Article  PubMed  CAS  Google Scholar 

  • Gaffney, J., West, D., Arnold, F., Sattar, A., and Kumar, S. 1985. Differences in the uptake of modified low density lipopoteins by tissue cultured endothelial cells. J. Cell Sci. 79:317–325.

    PubMed  CAS  Google Scholar 

  • Goldmann, E. E. 1913. Vitalfärbung am Zentralnervensystem. Abk. Preuss. Akad. Wissensch. Phys. — Math. 1:1–60.

    Google Scholar 

  • Goldstein, G. W. and A. L. Betz. 1986. The blood-brain barrier. Scient. American 255:70–79.

    Article  Google Scholar 

  • Gospodarowicz, D. and Lau, K. 1989. Pituitary follicular cells secrete both vascular endothelial growth-factor and follistatin. Biochem. Biophys. Res. Comm. 165:292–298.

    Article  PubMed  CAS  Google Scholar 

  • Hallman, R. Mayer, D.N., Berg, E.L., Broermann, R. and Butcher, E.C. 1995. Novel mouse endothelial cell surface marker is suppressed during differentiation of the blood-brain barrier. Developmental Dynamics 202:325–332.

    Article  Google Scholar 

  • Harahap, A. R. and Goding, J. W. 1988. Distribution of the murine plasma cell antigen PC-1 in non-lymphoid tissues. J. Immunol. 141:2317–2320.

    PubMed  CAS  Google Scholar 

  • Heuer, J. G., Vonbartheld, C. S., Kinoshita, Y., Evers, P. C., and Bothwell, M. 1990. Alternating phases of FGF-receptor and NGF-receptor expression in the developing chicken nervous-system. Neuron 5:283–296.

    Article  PubMed  CAS  Google Scholar 

  • Holash H. A., Noden, D. M. and Stewart, P. A. 1993. Re-evaluating the role of astrocytes in blood-brain barrier induction. Dev. Dyn. 197:14–25.

    Article  PubMed  CAS  Google Scholar 

  • Ishii, H., Salem, H. H., Bell, C. E., Laposata, E. A., and Majerus, P. W. 1986. Thrombomodulin, an endothelial anticoagulant protein, is absent from the human brain. Blood 67:362–365.

    PubMed  CAS  Google Scholar 

  • Janzer, R. C. and Raff, M. C. 1987. Astrocytes induce blood-brain barrier properties in endothelial cells. Nature 325:253–257.

    Article  PubMed  CAS  Google Scholar 

  • Jefferies, W. A., Brandon, M. R., Hunt, S. V., Williams, A. F., Gatter, K. C., and Mason, D. Y. 1984. Transferrin receptor on endothelium of brain capillaries. Nature 312:162–163.

    Article  PubMed  CAS  Google Scholar 

  • Kalaria, R. N., Mitchell, M. J., and Harik, S. I. 1987. Correlation of l-methyl-4-phenyl-l,2,3,6-tetrahydropyridine neurotoxicity with blood-brain barrier monoamine oxidase activity. Proc. Natl. Acad. Sci. USA 84:3521–3525.

    Article  PubMed  CAS  Google Scholar 

  • Keck, P. J., Hauser, S. D., Krivi, G., Sanzo, K., Warren, T., Feder, J., and Connolly, D. T. 1989. Vascular-permeability factor, an endothelial-cell mitogen related to PDGF. Science 246:1309–1312.

    Article  PubMed  CAS  Google Scholar 

  • Korhonen, J., Partanen, J., Armstrong, E., Vaahtokari, A., Elenius, K., Jalkanen, M. and Alitalo, K. 1992. Enhanced expression of the tie receptor tyrosine kinase in endothelial-cells during neovascularization. Blood 80:2548–2555.

    PubMed  CAS  Google Scholar 

  • Krause, D., Mischeck, U., Galla, H. J., and Dermietzel, R. 1991. Correlation of zonula-occludens zo-1 antigen expression and transendothelial resistance in porcine and rat cultured cerebral endothelial-cells. Neurosci. Letters 128:301–304.

    Article  CAS  Google Scholar 

  • Kuban, K. C. and Gilles, F. H. 1985. Human telencephalic angiogenesis. Ann. Neurol. 17:539–458.

    Article  PubMed  CAS  Google Scholar 

  • Kunz, J., Krause, D., Kremer, M., and Dermietzel, R. 1994. The 140-kda protein of blood-brain barrier-associated pericytes is identical to aminopeptidase-n. J. Neurochem. 62:2375–2386.

    Article  PubMed  CAS  Google Scholar 

  • Leonhardt, H. 1980. In Handbuch der Mikroskopischen Anatomie des Menschen (Oschke, A. Ed.) pp. 177-666, Springer-Verlag.

    Google Scholar 

  • Leung, D. W., Cachianes, G., Kuang, W. J., Goeddel, D. V., and Ferrara, N. 1989. Vascular endothelial growth-factor is a secreted angiogenic mitogen. Science 246:1306–1309.

    Article  PubMed  CAS  Google Scholar 

  • Lossinsky, A. S., Vorbrodt, A. W., and Wisniewski, H. M. 1986. Chracterization of endothelial cell transport in the developing mouse blood-brain barrier. Dev. Neurosci. 8:61–75.

    Article  PubMed  CAS  Google Scholar 

  • Macdonald, P. N., Bok, D., and Ong, D. E. 1990. Localization of cellular retinol-binding protein and retinol-binding protein in cells comprising the blood-brain-barrier of rat and human. Proc. Natl. Acad. Sci. USA 87:4265–4269.

    Article  PubMed  CAS  Google Scholar 

  • Madara, J. L. 1987. Intestinal absorptive cell tight junctions are linked to cytoskeleton. Am. J. Physiol. 253:C171–C175.

    PubMed  CAS  Google Scholar 

  • Madara, J. L. and Pappenheimer, J. R. 1987. Structural basis for physiological regulation of paracellular pathways in intestinal epithelia. J. Membrane Biol. 100:149–164.

    Article  CAS  Google Scholar 

  • Maher, P. A. and Pasquale, E. B. 1988. Tyrosine phosphorylated proteins in different tissues during chick embryo development. J. Cell. Biol. 106:1747–1755.

    Article  PubMed  CAS  Google Scholar 

  • Maisonpierre, P. C., Goldfarb, M., Yancopoulos, G. D. and Gao, G. X. 1993. Distinct rat genes with related profiles of expression define a tie receptor tyrosine kinase family. Oncogene 8:1631-1637.

    PubMed  CAS  Google Scholar 

  • Matthews, W., Jordan, C. T., Wiegand, G. W., Pardoll, D. and Lemischka I. R. 1991. A receptor tyrosine kinase specific to hematopoietic stem and progenitor cell-enriched populations. Cell 65:1143–1152.

    Article  PubMed  CAS  Google Scholar 

  • Méresse, S., Delbart, C., Fnichart J.C., and Cecchelli, R. 1989. Low-density lipoprotein receptor on endothelium of brain capillaries. J. Neurochenu 53:340–345.

    Article  Google Scholar 

  • Mergia, A., Tischer, E., Graves, D., Tumolo, A., Miller, J., Gospodarowicz, D., Abraham, J. A., Shipley, G. D., and Fiddes, J. C. 1989. Structural-analysis of the gene for human acidic fibroblast growth-factor. Biochem. Biophys. Res. Comm. 164:1121–1129.

    Article  PubMed  CAS  Google Scholar 

  • Meyer, J., Mischeck, U., Veyhl, M., Henzel, K., and Galla, H. J. 1990. Blood-brain-barrier characteristic enzymatic-properties in cultured brain capillary endothelial-cells. Brain Research 514:305–309.

    Article  PubMed  CAS  Google Scholar 

  • Millauer, B., Wizigmann-Voos, S., Schniirch, H., Martinez, R., Møller, N. P. H., Risau, W., and Ullrich, A. 1993. High affinity VEGF binding and developmental expression suggest Flk-1 as a major regulator of vasculogenesis and angiogenesis. Cell 72:835–846.

    Article  PubMed  CAS  Google Scholar 

  • Mori, S. and Nagano, M. 1985. Electron-microscopic cytochemistry of alkaline-phosphatase activity in endothelium, pericytes and oligodendrocytes in the rat brain. Histochemistry 82:225–231.

    Article  PubMed  CAS  Google Scholar 

  • Miihleisen, H., Wolburg, H., and Betz, E. 1989. Freeze-fracture analysis of endothelial cell membranes in rabbit carotid arteries subjected to short-term atherogenic stimuli. Virch. Arch. B Cell Pathol. 56:413–417.

    Article  Google Scholar 

  • Nagy, Z., Peters, H., and Hüttner, I. 1984. Fracture faces of cell junctions in cerebral endothelium during normal and hyperosmotic conditions. Lab. Invest. 50:313–322.

    PubMed  CAS  Google Scholar 

  • Nico, B., Cantino, D., Bertossi, M., Ribatti, D., Sassoe, M., and Roncali, L. 1992. Tight endothelial junctions in the developing microvasculature — a thin-section and freeze-fracture study in the chick-embryo optic tectum. J. Submicr. Cytol. Pathol. 24:85–95.

    CAS  Google Scholar 

  • Noden, D.M. 1991. Development of craniofacial blood vessels. In The development of the vascular system. R.N. Feinberg, G.K. Sherer, and R. Auerbach, editors. Karger, Basel. 1–24.

    Google Scholar 

  • Orlowski, M., Sessa, G., and Green, J. P. 1974. Gamma-glutamyl transpeptidase in brain capillaries: possible site of a blood-brain barrier for amino acids. Science 184:66–68.

    Article  PubMed  CAS  Google Scholar 

  • Partanen, J., Armstrong, E., Makela, T. P., Korhonen, J., Sandberg, M., Renkonen, R., Knuutila, S., Huebner, K. and Alitalo K. 1992. A novel endothelial-cell surface-receptor tyrosine kinase with extracellular epidermal growth-factor homology domains. Mol. Cell. Biol. 12:1698–1707.

    PubMed  CAS  Google Scholar 

  • Peters, K. G., Werner, S., Chen, G., and Williams, L. T. 1992. 2 FGF receptor genes are differentially expressed in epithelial and mesenchymal tissues during limb formation and organogenesis in the mouse. Development 114:233–243.

    PubMed  CAS  Google Scholar 

  • Phillips, H. S., Hains, J., Leung, D. W. and Ferrara, N. 1990. Vascular endothelial growth-factor is expressed in rat corpus luteum. Endocrinology 127:965–967.

    Article  PubMed  CAS  Google Scholar 

  • Plate, K. H., Breier, G., Weich, H. A. and Risau, W. 1992. Vascular endothelial growth-factor is a potential tumor angiogenesis factor in human gliomas in vivo. Nature 359:845–848.

    Article  PubMed  CAS  Google Scholar 

  • Plate, K.H., Breier, G. and Risau, W. 1994. Molecular mechanisms of developmental and tumor angiogenesis. Brain Pathol. 4:207–218.

    Article  PubMed  CAS  Google Scholar 

  • Plouet, J., Schilling, J. and Gospodarowicz, D. 1989. Isolation and characterization of a newly identified endothelial-cell mitogen produced by ATT-20 cells. EMBO Journal 8:3801–3806.

    PubMed  CAS  Google Scholar 

  • Puumala, M., Andersson, R.E. and Meyer, F.B. 1990. Intraventricular infusion of HBGF-2 promotes cerebral angiogenesis in wistar rat. Brain Res. 534:283–286.

    Article  PubMed  CAS  Google Scholar 

  • Qin, Y. and Sato, T. N. 1995. Mouse multidrug resistance la/3 gene is the earliest known endothelial cell differentiation marker during blood-brain barrier development. Develop. Dynamics 202:172–180.

    Article  CAS  Google Scholar 

  • Reese, T. S. and Karnovsky, M. J. 1967. Fine structural localization of a blood-brain barrier to exogenous peroxidase. J. Cell Biol. 34:207–217.

    Article  PubMed  CAS  Google Scholar 

  • Risau, W. 1986. Developing brain produces an angiogenesis factor. Proc. Natl. Acad. Sci. USA 83:3855–3859.

    Article  PubMed  CAS  Google Scholar 

  • Risau, W., Hallmann, R. and Albrecht, U. 1986a. Differentiation-Dependent Expression of Protein in Brain Endothelium during Development of the Blood-Brain Barrier. Dev. Biol. 117:537–545.

    Article  PubMed  CAS  Google Scholar 

  • Risau, W., Hallmann, R., Albrecht, U. and Henke-Fahle, S. 1986b. Brain induces the expression of an early cell surface marker for blood-brain barrier specific endothelium. EMBO J. 5:3179–3183.

    PubMed  CAS  Google Scholar 

  • Risau, W. and Lemmon, V. 1988. Changes in the vascular extracellular matrix during embryonic vasculogenesis and angiogenesis. Dev. Biol. 125:441–450.

    Article  PubMed  CAS  Google Scholar 

  • Risau, W., Sariola, H., Zerwes, H.-G., Sasse, J., Ekblom, P, Kemler, R., and Doetschman, T. 1988a. Vasculogenesis and angiogenesis in embryonic-stem-cell-derived embryoid bodies. Development 102:471–478.

    PubMed  CAS  Google Scholar 

  • Risau, W., Gautschi-Sova, P. and Bohlen, P. 1988b. Endothelial cell growth factors in embryonic and adult chick brain are related to human acidic fibroblast growth factors. EMBO J. 7:959–962.

    PubMed  CAS  Google Scholar 

  • Risau, W. 1990. Angiogenic growth factors. Progr. Growth Factor Res. 2:71–79.

    Article  CAS  Google Scholar 

  • Risau, W. and Wolburg, H. 1990. Development of the blood-brain barrier. Trends Neurosci. 13:174–178.

    Article  PubMed  CAS  Google Scholar 

  • Risau, W., Engelhardt, B. and Wekerle, H. 1990. Immune function of the blood-brain barrier: Incomplete presentation of protein (auto-)antigens by rat brain microvascular endothelium in vitro. J. Cell Biol. 110:1757–1766.

    Article  PubMed  CAS  Google Scholar 

  • Risau, W. 1991a. Induction of blood-brain-barrier endothelial-cell differentiation. Ann. NY Acad. Sci. 633:405–419.

    Article  PubMed  CAS  Google Scholar 

  • Risau, W. 1991b. Vasculogenesis, angiogenesis and endothelial cell differentiation during embryonic development. In The development of the vascular system. R.N. Feinberg, G.K. Sherer, and R. Auerbach, editors. Karger, Basel. 58–68.

    Google Scholar 

  • Risau, W. 1991c. Embryonic angiogenesis factors. Pharm. Ther. 51:371–376.

    Article  CAS  Google Scholar 

  • Risau, W. and Wolburg, H. 1991. The importance of the blood-brain-barrier in fetuses and embryos — reply. Trends Neurosci 14:15.

    Article  Google Scholar 

  • Risau, W., Dingier, A., Albrecht, U., Öcalan, M, Dehouck, M.-P. and Cecchelli, R. 1992. Blood-brain barrier pericytes are the main source of gamma-glutamyltranspeptidase activity in brain capillaries. J. Neurochem. 58:667–672.

    Article  PubMed  CAS  Google Scholar 

  • Robertson, P. L., Du Bois, M., Bowman, P. D. and Goldstein, G. W. 1985. Angiogenesis in developing rat brain: an in vivo and in vitro study. Dev. Brain Res. 23:219–223.

    Article  Google Scholar 

  • Romanoff, A. L. 1960. The avian embryo. Macmillan Company, New York.

    Google Scholar 

  • Roncali, L., Nico, B., Ribatti, D., Bertossi, M. and Mancini, L. 1986. Microscopical and ultrastructural investigations on ten development of the blood-brain barrier in the chick embryo optic tectum. Acta Neuropathol. 70:193–201.

    Article  PubMed  CAS  Google Scholar 

  • Rosenstein, J. M., Krum, J. M., Sternberger, L. A., Pulley, M. T. and Sternberger, N. H. 1992. Immunocytochemical expression of the endothelial barrier antigen (eba) during brain angiogenesis. Dev. Brain Res. 66:47–54.

    Article  CAS  Google Scholar 

  • Rubin, L. L., Hall, D. E., Porter, S., Barbu, K., Cannon C., Homer, H. C., Janatpour, M., Liaw, C. W., Manning, K., Morales, J., Tanner, L. L, Tomaselli, K. J., et al. 1991a. A cell-culture model of the blood-brain-barrier. J. Cell Biol. 115:1725–1735.

    Article  PubMed  CAS  Google Scholar 

  • Rubin, L. L., Barbu, K., Bard, F., Cannon, C., Hall, D. E., Homer, H., Janatpour, M., Liaw, C., Manning, K., Morales, J., Porter, S., Tanner, L. et al. 1991b. Differentiation of brain endothelial-cells in cell-culture. Ann. NY Acad. Sci. 633:420–425.

    Article  PubMed  CAS  Google Scholar 

  • Saunders, N. R. and Dziegielewska, K. M. 1991. The importance of the blood-brain barrier in fetuses and embryos-letter. Trends Neurosci. 14:14.

    Article  PubMed  CAS  Google Scholar 

  • Sasseville, V. G., Newman, W. A., Lackner, A. A., Smith, M. O., Lausen, N. C. G., Beall, D. and Ringler, D. J. 1992. Elevated vascular cell adhesion molecule-1 in AIDS encephalitis induced by Simian immunodeficiency virus. Am J. Pathol. 141:1021–1030.

    PubMed  CAS  Google Scholar 

  • Sato, T. N., Qin, Y., Kozak, C. A. and Audus, K.L. 1993. tie-1 and tie-2 define another class of putative receptor tyrosine kinase genes expressed in early embryonic vascular system. Proc. Natl. Acad. Sci. USA 90:9355–9358.

    Article  PubMed  CAS  Google Scholar 

  • Schielke, G. P., Moises, H. C. and Betz, A. L. 1990. Potassium activation of the Na, K-pump in isolated brain microvessels and synaptosomes. Brain Research 524:291–296.

    Article  PubMed  CAS  Google Scholar 

  • Schinkel., A. H., Smit, J.J.M., van Tellingen, O., Beijnen, J. H., Wagenaar, E., van Deemter, L., Mol, C. A. A. M., van der Valk, M. A., Robanus-Maandag, E. C., de Riele, H.P. J., Berns, A. J. M. and Borst, P. 1994. Disruption of the mouse mdr1a P-glycoprotein gene leads to a dificiency in the blood-brain barrier and to increased sensitivity to dnigs. Cell 77:491–502.

    Article  PubMed  CAS  Google Scholar 

  • Schnüren, H. and Risau, W. 1991. Differentiating and mature neurons express the acidic fibroblast growth-factor gene during chick neural development. Development 111:1143–1154.

    Google Scholar 

  • Schnüren, H. and Risau, W. 1993. Expression of tie-2, a member of a novel family of receptor tyrosine kinases, in the endothelial cell lineage. Development 119:957–968.

    Google Scholar 

  • Schulze, C. and Firth, J. A. 1992. Interendothelial junctions during blood-brain barrier development in the rat: morphological changes at the level of individual tight junctional contacts. Dev. Brain Res. 69:85–95.

    Article  CAS  Google Scholar 

  • Schulze, C. and Firth, J. A. 1993. Immunohistochemical localization of adherens junction components in blood-brain barrier microvessels of the rat. J. Cell. Sci. 104:773–782.

    PubMed  Google Scholar 

  • Senger, D. R., Galli, S. J., Dvorak, A. M., Perruzzi, C. A., Harvey, V. S. and Dvorak, H. F. 1983. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science 219:983–985.

    Article  PubMed  CAS  Google Scholar 

  • Seulberger, H., Lottspeich, F., and Risau, W. 1990. The inducible blood-brain barrier specific molecule HT7 is a novel immunoglobulin-like cell surface glycoprotein. EMBO J. 9:2151–2158.

    PubMed  CAS  Google Scholar 

  • Seulberger, H., Unger, C., Albrecht, U., and Risau, W. 1991. The inducible blood-brain-barrier endothelium-specific antigen HT7, a novel immunoglobulin-like membrane glycoprotein. Ann. NY Acad. Sci. 633:611–614.

    Article  PubMed  CAS  Google Scholar 

  • Seulberger, H., Unger, C. M. and Risau, W. 1992. HT7, neurothelin, basigin, gp42 and OX-47 — many names for one developmentally regulated immunoglobulin-like surface glycoprotein on blood-brain barrier endothelium, epithelial tissue barriers and neurons. Neurosci. Letters 140:93–97.

    Article  CAS  Google Scholar 

  • Shibuya, M., Yamaguchi, S., Yamane, A., Ikeda, T., Tojo, A., Matsushime, H. and Sato, T. 1990. Nucleotide sequence and expression of a novel human receptor-type tyrosine kinase gene (fit) closely related to the fms family. Oncogene 5:519–524.

    PubMed  CAS  Google Scholar 

  • Simionescu, M., Ghinea, N., Fixman, A., Lasser, M., Kukes, L., Simionescu, N., and Palade, G.E. 1988. The cerebral microvasculature of the rat: structure and luminal surface properties during early development. J. Submicrosc. Cytol. 20:243–261.

    CAS  Google Scholar 

  • Sims, D. E. 1986. The Pericyte — A review. Tissue and Cell 18:153–174.

    Article  PubMed  CAS  Google Scholar 

  • Steffen, B.J., Butcher, E.C., Engelhardt, B. 1994. Evidence for involvement of ICAM-1 and VCAM-1 in lymphocyte interaction with endothelium in experimental autoimmune encephalomyelitis (EAE) in the central nervous system (CNS) in the SJL/J mouse. Am. J. Pathol. 145:189–201.

    PubMed  CAS  Google Scholar 

  • Stevenson, B. R., Anderson, J. M, Godenough, D. A. and Mooseker, M. S. 1988. Tight junction structure and ZO-1 content are identical in two strains of Madin-Darby canine kidney cells which differ in transepithelial resistance. J. Cell Biol. 107:2401–2408.

    Article  PubMed  CAS  Google Scholar 

  • Stewart, P. A. and Hayakawa, E. M. 1987. Interendothelial junctional changes underlie the developmental ‘tightening’ of the blood-brain barrier. Dev. Brain Res. 32:271–281.

    Article  Google Scholar 

  • Stewart, P. A. and Wiley, M. J. 1981. Developing nervous tissue induces formation of blood-brain barrier characteristics in invading endothelial cells: A study using quail-chick transplantation chimeras. Dev. Biol. 84:183–192.

    Article  PubMed  CAS  Google Scholar 

  • Stewart, P.A., Magliocco, M., Hayakawa, K., Farrell, C.L., Del Maestro, R. F., Girvin, J., Kaufmann, J.C.E., Vinters, H.V. and Gilbert, J. 1987. A quantitative analysis of blood-brain barrier ultrastructure in the aging human. Microvasc. Res. 33:270–282.

    Article  PubMed  CAS  Google Scholar 

  • Tao-Cheng, J.-H. and Brightman, M. W. 1988. Development of membrane interactions between brain endothelial cells and astrocytes in vitro. Int. J. Dev. Neurosci. 6:25–37.

    Article  PubMed  CAS  Google Scholar 

  • Tischer, E., Gospodarowicz, D., Mitchell, R., Silva, M., Schilling, J., Lau, K., Crisp, T., Fiddes, J. C., and Abraham, J. A. 1989. Vascular endothelial growth-factor — a new member of the platelet-derived growth-factor gene family. Biochem. Biophys. Res. Comm. 165:1198–1206.

    Article  PubMed  CAS  Google Scholar 

  • Tontsch, U. and Bauer, H. C. 1991. Glial-cells and neurons induce blood-brain-barrier related enzymes in cultured cerebral endothelial-cells. Brain Research 539:247–253.

    Article  PubMed  CAS  Google Scholar 

  • Trancard, J., Delamanche, I. S., Ruiz, G., and Bouchaud, C. 1989. Interspecific variations of cerebral endothelial cholinesterases in rodents and carnivores. Brain Res. 476:213–219.

    Article  PubMed  CAS  Google Scholar 

  • Tsukita, S., Oshi, K., Akiyama, T., Yamanashi, Y., Yamamoto, T. and Tsukita, S. 1991. Specific protooncogenic tyrosine kinases of src family are enriched in cell-to-cell adherens junctions where the level of tyrosine phosphorylation is elevated. J. Cell Biol. 113:867–879.

    Article  PubMed  CAS  Google Scholar 

  • Ullrich, A. and Schlessinger, J. 1990. Signal transduction by receptors with tyrosine kinase activity. Cell 61:203–212.

    Article  PubMed  CAS  Google Scholar 

  • Umemori, H., Wanaka, A., Kato, H., Takeuchi, M., Tohyama, M., and Yamamoto, T. 1992. Specific expressions of fyn and lyn, lymphocyte antigen receptor-associated tyrosine kinases, in the central-nervous-system. Mol. Brain Res. 16:303–310.

    Article  PubMed  CAS  Google Scholar 

  • Vlodavsky, I., Folkman, J., Sullivan, R., Fridman, R., Ishai-Michaeli, R., Sasse, J., and Klagsbrun, M. 1987. Endothelial cell-derived basic fibroblast growth factor: Synthesis and deposition into subendothelial extracellular matrix. Proc. Nail. Acad. Sci. USA 84:2292–2296.

    Article  CAS  Google Scholar 

  • Vorbrodt, A. W. 1986. Changes in the distribution of endothelial surface glyoconjugates associated with altered permeability of brain micro-blood vessels. Ada Neuropathol. (Bed.) 70:103-111.

    Article  CAS  Google Scholar 

  • Vorbrodt, A. W., Lossinsky, A. S., and Wisniewski, H. M. 1986c. Localization of alkaline phosphatase activity in endothelia of developing and mature mouse blood-brain barrier. Dev. Neurosci. 8:1–13.

    Article  PubMed  CAS  Google Scholar 

  • Vorbrodt, A. W., Lossinsky, A. S., Dobrogowska, D. H., and Wisniewski, H. M. 1986b. Distribution of anionic sites and glycoconjugates on the endothelial surfaces of the developing blood-brain barrier. Dev. Brain Res. 29:69–79.

    Article  CAS  Google Scholar 

  • Vorbrodt, A. W., Dobrogowska, D. H., Lossinsky, A. S. and Wisniewski, H. M. 1986a. Ultrastructural localization of lectin receptors on the luminal and abluminal aspects of brain micro-blood vessels. J. Histochem. Cytochem. 34:251–261.

    Article  PubMed  CAS  Google Scholar 

  • Wakai, S. and Hirokawa, N. 1978. Development of the blood-brain barrier to horseradish peroxidase in the chick embryo. Cell Tissue Res 195:195–203.

    Article  PubMed  CAS  Google Scholar 

  • Wanaka, A., Milbrandt, J. and Johnson, E. M. 1991. Expression of FGF receptor gene in rat development. Development 111:455–468.

    PubMed  CAS  Google Scholar 

  • Weilerguttler, H., Sommerfeldt, M., Papandrikopoulou, A., Mischek, U., Bonitz, D., Frey, A., Grupe, M., Scheerer, J., and Gassen, H. G. 1990. Synthesis of apolipoprotein-a-1 in pig brain microvascular endothelial-cells. J. Neurochem. 54:444–450.

    Article  CAS  Google Scholar 

  • Wolburg, H., Neuhaus, J., Kniesel, U., Krauß, B., Schmid, E.M., Öcalan, M., Farrell C. and Risau, W. 1994. Modulation of tight junction structure in blood-brain barrier endothelial cells. J. Cell. Sci. 107:1347–1357.

    PubMed  CAS  Google Scholar 

  • Yamanashi, Y., Okada, M., Semba, T., Yamori, T., Umemori, H., Tsunasawa, S., Toyoshima, K., Kitamura, D., Watanabe, T. and Yamamoto, T. 1993. Identification of HS1 protein as a major substrate of protein-tyrosine kinase(s) upon B-cell antigen receptor-mediated signalling. Proc. Natl. Acad. Sci. USA 90:3631–3635.

    Article  PubMed  CAS  Google Scholar 

  • Yoshida, Y., Yamada, M., Wakabayashi, K. and Ikuta, F. 1988. Endothelial fenestrae in the rat fetal cerebrum. Dev. Brain Res. 44:211–219.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Engelhardt, B., Risau, W. (1995). Development of the Blood-Brain Barrier. In: Greenwood, J., Begley, D.J., Segal, M.B. (eds) New Concepts of a Blood—Brain Barrier. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1054-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1054-7_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1056-1

  • Online ISBN: 978-1-4899-1054-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics