Skip to main content

Long-Chain Fatty Acid Transport at the Blood-Brain Barrier and Incorporation into Brain Phospholipids: A New In Vivo Method for Examining Neuroplasticity, and Brain Second Messenger Systems Involving Phospholipase A2 Activation

  • Chapter

Abstract

Brain functional activity and structural integrity are related to rates of formation and turnover of phospholipids (Porcellati et al., 1983; Fisher and Agranoff, 1987; Axelrod et al., 1988). Until recently, these rates were estimated by injecting radiolabeled precursors intracerebrally in animals — radiolabeled glucose, acetate, ethanolamine, glycerol, fatty acids (FAs) or ethanolamine — and by killing the animals at different times thereafter to follow biochemical compartment radioactivities (Sun and Su, 1979; Porcellati et al., 1987). Unfortunately, intracerebral injections damage brain tissue, are not applicable to autoradiographic analysis or in vivo positron emission tomography (PET), and give half-lives of acyl groups within phospholipids which ignore effects of recycling.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Axelrod, J., Burch, R. M., and Jelsema, C. L., 1988, Receptor-mediated activation of phospholipase A via GTP-binding proteins: Arachidonic acid and its metabolites as second messengers, Trends Neurosci. 11: 117–123.

    Article  PubMed  CAS  Google Scholar 

  • Bazán, N. G., 1989, Arachidonic acid in the modulation of excitable membrane function and at the onset of brain damage., Ann. N.Y. Acad. Sci. 559: 1–16.

    Article  PubMed  Google Scholar 

  • Bazán, N. G., 1990, Supply of n-3 polyunsaturated fatty acids and their significance in the central nervous system, in: “Nutrition and the Brain,” New York, Raven Press. 1–24.

    Google Scholar 

  • Berridge, M. J., and Irvine, R. F., 1984, Inositol trisphosphate, a novel second messenger in cellular signal transduction, Nature. 312: 315–321.

    Article  PubMed  CAS  Google Scholar 

  • Chang, M. C. J., Arai, T., Freed, L. M, Wakabayashi, S., Channing, M. A., Dunn, B. B., Der, M. G., Bell, J. M., Herscovitch, P., Eckelman, W. C, and Rapoport, S. I., In preparation, Brain incorporation of 11C-arachidonate in normocapnic and hypercapnic monkeys: a study using positron emission tomography.

    Google Scholar 

  • Chang, M. C. J., Wakabayashi, S., and Bell, J. M., 1994, The effect of methyl palmoxirate on incorporation of [U-14C]palmitate into rat brain, Neurochem. Res. 19: 1217–1223.

    Article  PubMed  CAS  Google Scholar 

  • Channing, M. A., and Simpson, N., 1993, Radiosynthesis of l-[11C]polyhomoallylic fatty acids, J.Labelled Compds. Radiopharmacol. 33: 541–546.

    Article  CAS  Google Scholar 

  • Dawson, R. M. C, 1985, Enzymatic pathways of phospholipid metabolism in the nervous system, in: “Phospholipids in nervous tissues,” New York, John Wiley and Sons. 45–78.

    Google Scholar 

  • De Micheli, E., and Rapoport, S. I., In preparation, Increased incorporation of labeled palmitic acid ipsilateral to chronic damage of the nucleus basalis signifies dendritic-synaptic neuroplasticity.

    Google Scholar 

  • DeGeorge, J. J., Nariai, T., Yamazaki, S., Williams, W. M, and Rapoport, S. I., 1991, Arecolinestimulated brain incorporation of intravenously administered fatty acids in unanesthetized rats, J. Neurochem. 56: 352–355.

    Article  PubMed  CAS  Google Scholar 

  • DeGeorge, J. J., Noronha, J., Bell, J. M., Robinson, P., and Rapoport, S. I., 1989, Intravenous injection of [1-14C]arachidonate to examine regional brain lipid metabolism in unanesthetized rats, J. Neurosci. Res. 24: 413–423.

    Article  PubMed  CAS  Google Scholar 

  • DeGeorge, J. J., Ousley, A. H., McCarthy, K. D., Lapetina, E. G., and Morell, P., 1987, Acetylcholine stimulates selective liberation and re-esterification of arachidonate and accumulation of inositol phosphates and glycerophosphoinositol in C62B glioma cells, J. Biol. Chem. 262: 8077–8083.

    PubMed  CAS  Google Scholar 

  • Fisher, S. K., and Agranoff, B. W., 1987, Receptor activation and inositol lipid hydrolysis in neural tissues, J. Neurochem. 48: 999–1017.

    Article  PubMed  CAS  Google Scholar 

  • Ford, D. H., 1973, Selected maturational changes observed in the postnatal rat brain, Progr. Brain Res. 40: 1–12.

    Article  CAS  Google Scholar 

  • Freed, L. M., Wakabayashi, S., Bell, J. M., and Rapoport, S. I., 1994, Effect of inhibition of α-oxidation on incorporation of [U-14C]palmitate and [1-14C]arachidonate into brain lipids, Brain Res. 645: 41–48.

    Article  PubMed  CAS  Google Scholar 

  • Gazzah, N., Gharib, G., Bobillier, P., Lagarde, M, and Sarda, N., 1993, Evidence for docosahexaenoate recycling in the free-moving rat brain. 1st Intl. Congress ISSFAL, June 30–July 3, Lugano.

    Google Scholar 

  • Grange, E., Deutsch, J., Chang, M., Smith, Q. R., Rapoport, S. I., and Purdon, A. D., In press, Brain palmitic acid incorporation in the awake rat: relation between specific activity of [9,10-3H]palmitate in plasma and brain palmitoyl-CoA pool J. Neurochem.

    Google Scholar 

  • Greville, G. D., and Tubbs, P. K., 1968, The catabolism of long-chain fatty acids in mammalian tissues, Essays Biochem. 4: 155–212.

    PubMed  CAS  Google Scholar 

  • Lehninger, A. L., Nelson, D. L., and Cox, M. M., 1993, “Principles of Biochemistry,” New York, Worth.

    Google Scholar 

  • Maiese, K., Holloway, H. W., Larson, D. M., Reis, D. J., and Soncrant, T. T., 1991, Coupling of regional cerebral metabolism and blood flow in the conscious rat is maintained after treatment with the muscarinic agonist arecoline, Abstr. Soc. Neuroscience 17: 26.

    Google Scholar 

  • Nariai, T., DeGeorge, J. J., Greig, N. H., Genka, S., Rapoport, S. I., and Purdon, A. D., 1994, Differences in rates of incorporation of intravenously injected radiolabeled fatty acids into phospholipids of intracerebrally implanted tumor and brain in awake rats, Clin. Exptl. Metast. 12: 213–225.

    Article  CAS  Google Scholar 

  • Nariai, T., DeGeorge, J. J., Greig, N. H., and Rapoport, S. I., 1991a, In vivo incorporation of [9,10-3H]palmitate into a rat metastatic brain-tumor model, J. Neurosurg. 74: 643–649.

    Article  PubMed  CAS  Google Scholar 

  • Nariai, T., DeGeorge, J. J., Lamour, Y., and Rapoport, S. I., 1991b, In vivo brain incorporation of [1-14C]arachidonate in awake rats, with or without cholinergic stimulation, following unilateral lesioning of nucleus basal is magnocellularis, Brain Res. 559: 1–9.

    Article  PubMed  CAS  Google Scholar 

  • Nariai, T., Greig, N. H., DeGeorge, J. J., Genka, S., and Rapoport, S. I., 1993, Intravenously injected radiolabelled fatty acids image brain tumor phospholipids in vivo: differential uptakes of palmitate, arachidonate and docosahexaenoate, Clin. Exptl. Metastasis 11: 141–149.

    Article  CAS  Google Scholar 

  • Noronha, J. G., Bell, J. M., and Rapoport, S. I., 1990, Quantitative brain autoradiography of [9,10-3H]palmitic acid incorporation into brain lipids, J. Neurosci. Res. 26: 196–208.

    Article  PubMed  CAS  Google Scholar 

  • Noronha, J. G., Larson, D. M., and Rapoport, S. I., 1989, Regional cerebral incorporation of plasma [14C]palmitate, and cerebral glucose utilization in water-deprived Long-Evans and Brattleboro rats, Exp. Neurol. 103: 267–276.

    Article  PubMed  CAS  Google Scholar 

  • Norton, W. T., and Poduslo, S. E., 1973, Myelination in rat brain: changes in myelin composition during brain maturation, J. Neurochem. 21: 759–773.

    Article  PubMed  CAS  Google Scholar 

  • Ohno, K., Pettigrew, K. D., and Rapoport, S. I., 1979, Local cerebral blood flow in the conscious rat, as measured with 14C-antipyrine, 14C-iodoantipyrine and 3H-mcotine, Stroke. 10: 62–67.

    Article  PubMed  CAS  Google Scholar 

  • Orzi, F., Diana, G., Casamenti, F., Palombo, E., and Fieschi, C., 1988, Local cerebral glucose utilization following unilateral and bilateral lesions of the nucleus basalis magnocellularis in the rat, Brain Res. 462: 99–103.

    Article  PubMed  CAS  Google Scholar 

  • Osmundsen, H., Cervenka, J., and Bremer, J., 1982, A role for 2,4-enoyl-CoA reductase in mitochondrial b-oxidation of polyunsaturated fatty acids. Effects of treatment with clofibrate on oxidation of polyunsaturated acylcarnitines by isolated rat liver, Biochem. J. 208: 749–757.

    PubMed  CAS  Google Scholar 

  • Pardridge, W. M., and Mietus, L. J., 1980, Palmitate and cholesterol transport through the blood-brain barrier, J. Neurochem. 34: 463–466.

    Article  PubMed  CAS  Google Scholar 

  • Porcellati, G., Goracci, G., and Arienti, G., 1983, Lipid turnover, in: “Modern Methods in Pharmacology, Vol. 4, Methods for Studying Platelets and Megakaryocytes,” New York, Alan R. Liss. 229–265.

    Google Scholar 

  • Robinson, P., Villacreses, N., Rapoport, S., and Smith, Q. R., 1990, Brain capillary perfusion and blood volume during acute hypoxia, hypercapnia or pentobarbital anesthesia, Abstr. Soc. Neurosci. 16: 741.

    Google Scholar 

  • Robinson, P. J., Noronha, J., DeGeorge, J. J., Freed, L. M., Nariai, T., and Rapoport, S. I., 1992, A quantitative method for measuring regional in vivo fatty-acid incorporation into and turnover within brain phospholipids: review and critical analysis, Brain Res. Rev. 17: 187–214.

    Article  PubMed  CAS  Google Scholar 

  • Robinson, P. J., and Rapoport, S. I., 1986, Kinetics of protein binding determine rates of uptake of drugs by brain., Am. J. Physiol. 251: R1212–R1220.

    PubMed  CAS  Google Scholar 

  • Scott, B. L., and Bazán, N. G., 1989, Membrane docosahexaenoate is supplied to the developing brain and retina by the liver, Proc. Natl. Acad. Sci. U.S.A. 86: 2903–2907.

    Article  PubMed  CAS  Google Scholar 

  • Shafrir, E., Gatt, S., and Khasis, S., 1965, Partition of fatty acids of 20–24 carbon atoms between serum albumin and lipoproteins, Biochim. Biophy. Ada. 98: 365–371.

    Article  CAS  Google Scholar 

  • Smith, Q. R., Nagura, H., Washizaki, K., DeGeorge, J., Robinson, P. J., and Rapoport, S. I., 1991, Kinetics of fatty acid dissociation from albumin and transport into brain, Abstr. Soc. Neurosci. 17: 239.

    Google Scholar 

  • Spector, R., 1988, Fatty acid transport through the blood-brain barrier, J. Neurochem. 50: 639–643.

    Article  PubMed  CAS  Google Scholar 

  • Staufenbiel, M., 1988, Fatty acids covalently bound to erythrocyte proteins undergo a differential turnover in vivo, J. Biol. Chem. 263: 13615–13622.

    PubMed  CAS  Google Scholar 

  • Sun, G. Y., and Su, K. L., 1979, Metabolism of arachidonoyl phosphoglycerides in mouse brain subcellular fractions, J. Neurochem. 32: 1053–1059.

    Article  PubMed  CAS  Google Scholar 

  • Svenson, A., Holmer, E., and Andersson, L. O., 1974, A new method for the measurement of dissociation rates for complexes between small ligands and proteins as applied to the palmitate and bilirubin complexes with serum albumin, Biochim. Biophys. Acta. 342: 54–59.

    Article  PubMed  CAS  Google Scholar 

  • Tabata, H., Bell, J. M., Miller, J. C., and Rapoport, S. I., 1986, Incorporation of plasma palmitate into the brain of the rat during development, Dev. Brain Res. 29: 1–8.

    Article  CAS  Google Scholar 

  • Tone, O., Miller, J. C., Bell, J. M., and Rapoport, S. I., 1987, Regional cerebral palmitate incorporation following transient bilateral carotid occlusion in awake gerbils, Stroke. 18: 1120–1127.

    Article  PubMed  CAS  Google Scholar 

  • Tone, O., Miller, J. C, Bell, J. M., and Rapoport, S. I., 1988, Regional cerebral palmitate incorporation after unilateral auditory deprivation in immature and adult Fischer-344 rats, Exp. Neurol. 100: 491–505.

    Article  PubMed  CAS  Google Scholar 

  • Wakabayashi, S., Freed, L. M., Bell, J. M., and Rapoport, S. I., 1994, In vivo cerebral incorporation of radiolabeled fatty acids after acute unilateral orbital enucleation in adult hooded Long-Evans rats, J. Cereb. Blood Flow Metab. 14: 312–323.

    Article  PubMed  CAS  Google Scholar 

  • Wakabayashi, S., Freed, L. M., Chang, M., and Rapoport, S. I., In press, In vivo imaging of brain incorporation of fatty acids and of 2-deoxy-D-glucose suggests distinct remodeling and functional neuroplastic effects of chronic unilateral visual deprivation in rats, Brain. Res.

    Google Scholar 

  • Washizaki, K., Purdon, D., DeGeorge, J., Robinson, P. J., Rapoport, S. I., and Smith, Q. R., 1991, Fatty acid uptake and esterification by the in situ perfused rat brain, Abstr. Soc. Neuroscience 17: 864.

    Google Scholar 

  • Washizaki, K., Smith, Q. R., Rapoport, S. I., and Purdon, A. D., 1994, Brain arachidonic acid incorporation and precursor pool specific activity during intravenous infusion of unesterified [3H]arachidonate in the anesthetized rat, J. Neurochem. 63: 727–736.

    Article  PubMed  CAS  Google Scholar 

  • Wosilait, W. D., and Soler-Argilaga, C., 1975, A theoretical analysis of multiple binding of palmitate by bovine serum albumin: the relationship to uptake of free fatty acids by tissues, Life Sci. 17: 159–166.

    Article  PubMed  CAS  Google Scholar 

  • Yamazaki, S., DeGeorge, J. J., Bell, J. M., and Rapoport, S. I., 1994, Effect of pentobarbital on incorporation of plasma palmitate into rat brain, Anesthesiology 80: 151–158.

    Article  PubMed  CAS  Google Scholar 

  • Yamazaki, S., Noronha, J. G., Bell, J. M., and Rapoport, S. I., 1989, Incorporation of plasma [U-14C]palmitate into the hypoglossal nucleus following unilateral axotomy of the hypoglossal nerve in adult rat, with and without regeneration, Brain Res. 477: 19–28.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rapoport, S.I., Robinson, P.J. (1995). Long-Chain Fatty Acid Transport at the Blood-Brain Barrier and Incorporation into Brain Phospholipids: A New In Vivo Method for Examining Neuroplasticity, and Brain Second Messenger Systems Involving Phospholipase A2 Activation. In: Greenwood, J., Begley, D.J., Segal, M.B. (eds) New Concepts of a Blood—Brain Barrier. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1054-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1054-7_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1056-1

  • Online ISBN: 978-1-4899-1054-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics