Skip to main content

Molecular Aspects of Catalysis and of Allosteric Regulation of Aceytlcholinesterases

  • Chapter

Abstract

Acetylcholinesterase is a serine hydrolase whose function at the cholinergic synapse, is the rapid hydrolysis of the neurotransmitter acetylcholine (ACh). The recently resolved 3D structure of Torpedo californica AChE (TcAChE) revealed a deep and narrow ‘gorge’, which penetrates halfway into the enzyme and contains the catalytic site at about 4A from its base (Sussman et al., 1991). The active center interacts with ACh through several subsites including the catalytic triad (Ser203(200), His447(440), Glu334(327): Sussman et al., 1991; Gibney et al., 1990; Shafferman et al., 1992a, b), the oxyanion hole (Gly121(119), Gly 122(120), Ala204(201); Sussman et al., 1991), the acyl pocket (Phe295 (288) and Phe297(290); Vellom et al., 1993; Ordentlich et al., 1993a).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barak, D., Ariel, N., Velan, B., and Shafferman, A. (1992). Molecular models for human AChE and its phosphonylation products. In: Multidisciplinary Approaches to Cholinesterase Functions. (Shafferman A. and Velan B. Eds). Plenum Pub. Co., London, 195–199.

    Chapter  Google Scholar 

  • Barak, D., Kronman, C., Ordentlich, A., Ariel, N., Bromberg, A., Marcus, D., Lazar, A., Velan, B., and Shafferman, A. (1994). Acetylcholinesterase peripheral anionic site degeneracy conferred by amino acid arrays sharing a common core. J.Biol.Chem. 264, 6296–6305.

    Google Scholar 

  • Berman, H. A., Becktel, W., and Taylor, P. (1981) Spectroscopic studies on acetylcholinesterase: influence of peripheral-site occupation on active-center conformation. Biochemistry 20, 4803–4810.

    Article  PubMed  CAS  Google Scholar 

  • Berman, H., A. and Nowak, M., W. (1992). influence of ionic composition of the medium on acetylcholinesterase conformation. In: Multidisciplinary Approaches to Cholinesterase Functions. (Shafferman A. and Velan B. Eds). Plenum Pub. Co., London. 149–156.

    Chapter  Google Scholar 

  • Changeux, J. P. (1966). Responses of acetylcholinesterase from Torpedo marmorata to salts and curarizing drugs. Mol.Pharmacol., 2, 369–392.

    PubMed  CAS  Google Scholar 

  • Cohen, S. G., Elkind, J.L., Chishti, S.B., Giner, J-L.P., Reese, H. and Cohen, J.B. (1984). Effects of volume and surface property in hydrolysis by acetylcholinesterase. The trimethyl site. J. Med. Chem. 27, 1643–1647.

    Article  CAS  Google Scholar 

  • Gibney, G., Camp, S., Dionne, M., MacPhee-Quigley, K. and Taylor, P. (1990). Mutagenesis of essential functional residues in acetylcholinesterase. Proc. Natl. Acad. Sci. USA. 87, 7546–7550.

    Article  PubMed  CAS  Google Scholar 

  • Harel, M., Schalk, I., Ehret-Sabatier, L., Bouet, F., Goeldner, M., Hirth, C., Axelsen, P.H., Silman, I. and Sussman, J.L. (1993). Quaternary ligand binding to aromatic residues in the active-site gorge of acetylcholinesterase. Proc. Natl. Acad. Sci. USA 90, 9031–9035.

    Article  PubMed  CAS  Google Scholar 

  • Hassan, F. B., Cohen, S.G. and Cohen, J.B. (1980). Hydrolysis by acetylcholinesterase. J. Biol. Chem. 255, 3898–3904.

    Google Scholar 

  • Hucho, F., Jarv, J., and Weise, C. (1991). Substrate-binding sites in acetylcholinesterase. Trends Parmacol. Sci. 12, 422–427.

    Article  CAS  Google Scholar 

  • Krupka, R. M. (1966). Chemical structure and function of the active center of acetylcholinesterase. Biochemistry 5, 1988–1998.

    Article  PubMed  CAS  Google Scholar 

  • Massoulie, J., Sussman, J., Bon, S. and Silman, I. (1993). Structure and function of acetylcholinesterase and butyrylcholinesterase. Progress in Brain Research 98, 139–146.

    Article  PubMed  CAS  Google Scholar 

  • Nair, H. K., Seravalli, J., Arbuckle, T. and Quinn, D.M. (1994). Molecular recognition in acetylcholinesterase catalysis: free-energy correlations for substrate turnover and inhibition by trifluoroketone transition state analogs. Biochemistry 33, 8566–8576.

    Article  PubMed  CAS  Google Scholar 

  • Ordentlich A., Barak, D., Kronman, C., Flashner, Y., Leitner, M., Segall, Y., Ariel, N., Cohen, S., Velan, B., and Shafferman, A. (1993a). Dissection of the human acetylcholinesterase active center-determinants of substrate specificity: Identification of residues constituting the anionic site, the hydrophobic site, and the acyl pocket J. Biol.Chem. 268, 17083–17095.

    PubMed  CAS  Google Scholar 

  • Ordentlich A., Kronman, C., Barak, D., Stein, D., Ariel, N., Marcus, D., Velan, B., and Shafferman, A. (1993b). Engineering resistance to ‘aging’ in phosphylated human acetylcholinesterase-role of hydrogen bond network in the active center. FEBS Lett. 334, 215–220.

    Article  PubMed  CAS  Google Scholar 

  • Quinn, D. M. (1987). AChE: Enzyme structure, reaction dynamics and virtual transition states. Chem. Rev. 87, 955–979.

    Article  CAS  Google Scholar 

  • Radić, Z., Duran, R., Vellom, D.C., Li, Y., Cervenansky, C. and Taylor, P. (1994). Site of fasciculin interaction with acetylcholinesterase. J. Biol. Chem. 269, 11233–11239.

    PubMed  Google Scholar 

  • Ripoll, D. L., Faerman, C.H., Axelsen, P.H., Silman, I. and Sussman, J.L. (1993). An electrostatic mechanism for substrate guidance down the aromatic gorge of acetylcholinesterase. Proc. Natl. Acad. Sci. USA 90, 5128–5132.

    Article  PubMed  CAS  Google Scholar 

  • Shafferman, A., Kronman, C., Flashner, Y., Leitner, S., Grosfeld, H., Ordentlich, A., Gozes, Y., Cohen, S., Ariel, N., Barak, D., Harel, M., Silman, I., Sussman, J.L. and Velan, B., (1992a). Mutagenesis of human acetylcholinesterase. J. Biol. Chem. 267, 17640–17648.

    PubMed  CAS  Google Scholar 

  • Shafferman, A., Velan, B., Ordentlich, A., Kronman, C., Grosfeld, H., Leitner, M., Flashner, Y., Cohen, S., Barak, D., and Ariel, N. (1992b). Substrate inhibition of acetylcholinesterase: residues affecting signal transduction from the surface to the catalytic center. EMBO J. 11, 3561–3568.

    PubMed  CAS  Google Scholar 

  • Shafferman, A., Ordentlich, A., Barak, D., Kronman, C., Ber, R., Bino, T., Ariel, N., Osman, R. and Velan, B. (1994). Electrostatic attraction by surface charge does not contribute to the catalytic efficiency of acetylcholinesterase. EMBO J. 13, 3448–3455.

    PubMed  CAS  Google Scholar 

  • Sussman, J.L, Harel, M., Frolow, F., Oefner, C., Goldman, A. and Silman I. (1991). Atomic resolution of acetylcholinesterase from Torpedo californica: A prototypic acetlycholine binding protein. Science 253, 872–879.

    Article  PubMed  CAS  Google Scholar 

  • Tan, R. C., Truong, T.N., McCammon, J.A. and Sussman, J. (1993). Acetylcholinesterase: electrostatic steering increases the rate of ligand binding. Biochemistry 32, 401–403.

    Article  PubMed  CAS  Google Scholar 

  • Taylor, P. and Radić, Z. (1994). The cholinesterases: From genes to proteins. Annu. Rev. Pharmac. Toxicol. 34, 281–320.

    Article  CAS  Google Scholar 

  • Vellom, D. C., Radic, Z., Li, Y., Pickering, N.A., Camp, S. and Taylor, P. (1993). Amino acid residues controlling acetylcholinesterase and butyrylcholinesterase specificity. Biochemistry 32, 12–17.

    Article  PubMed  CAS  Google Scholar 

  • Weise, C., Kreienkamp, H-J., Raba, R., Pedak, A., Aaviksaar, A. and Hucho, F. (1990). Anionic subsites of the acetylcholinesterase from Torpedo californica: affinity labelling with the cationic reagent N, N-di-methyl-2-phenyl-aziridinium. EMBO J. 9, 3885–3888.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Shafferman, A. et al. (1995). Molecular Aspects of Catalysis and of Allosteric Regulation of Aceytlcholinesterases. In: Quinn, D.M., Balasubramanian, A.S., Doctor, B.P., Taylor, P. (eds) Enzymes of the Cholinesterase Family. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1051-6_38

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1051-6_38

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1053-0

  • Online ISBN: 978-1-4899-1051-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics