Skip to main content

Structures of Complexes of Acetylcholinesterase with Covalently and Non-Covalently Bound Inhibitors

  • Chapter
  • 18 Accesses

Abstract

The principal biological role of acetylcholinesterase (AChE, acetylcholine hydrolase, EC 3.1.1.7) is to terminate signal transmission at cholinergic synapses by rapid hydrolysis of the neurotransmitter, acetylcholine (ACh) (Barnard, 1974). In keeping with this requirement, AChE possesses a remarkably high specific activity, especially for a serine hydrolase (Quinn, 1987), functioning at a rate approaching that of a diffusion-controlled reaction (Bazelyansky et al., 1986). Early kinetic studies indicated that the active site of AChE consists of two subsites, the ‘esteratic’ and ‘anionic’ subsites, corresponding to the catalytic machinery and the choline-binding pocket, respectively (Nachmansohn and Wilson, 1951). A second, ‘peripheral’, anionic site exists, so named because it appears to be distant from the active site (Taylor and Lappi, 1975). The elucidation of the three-dimensional structure of Torpedo AChE (Sussman et al., 1991) served to confirm these earlier studies, and has showed that AChE contains a catalytic triad similar to that present in other serine hydrolases (Steitz and Shulman, 1982). Unexpectedly, it also revealed that this triad is located near the bottom of a deep and narrow cavity, ∼20 Å deep, which has been named the ‘active-site gorge’. The cavity is lined by the rings of fourteen aromatic residues which are conserved in the AChE sequences published so far (Gentry and Doctor, 1991). Much of the subsequent research on structure-function relationships in AChE has been concerned with the functional significance of the gorge and with the role of the aromatic rings which account for more than 50% of its surface area (Axelsen et al., 1994). Thus, structural evidence (Axelsen et al., 1994; Sussman et al., 1991), as well as evidence obtained by modeling (Harel et al., 1992), by chemical modification (Harel et al., 1993; Schalk et al., 1992; Weise et al., 1990), and by site-directed mutagenesis (Harel et al., 1992; Ordentlich et al., 1993; Radie et al., 1993; Shafferman et al., 1992; Vellom et al., 1993), all point to important roles for certain of these conserved aromatic residues in both the ‘esteratic’ and ‘anionic’ subsites of the active site, and in the ‘peripheral’ anionic site.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Axelsen, P.H., Harel, M., Silman, I. and Sussman, J.L. (1994) Prot Sci 3: 188–197.

    Article  CAS  Google Scholar 

  • Barnard, E.A., 1974, in The Peripheral Nervous System (Hubbard, J.I., Ed.), pp. 201–224, Plenum, New York.

    Chapter  Google Scholar 

  • Bazelyansky, M., Robey, C. and Kirsch, J.F. (1986) Biochemistry 25: 125–130.

    Article  PubMed  CAS  Google Scholar 

  • Brodbeck, U., Schweikert, K., Gentinetta, R. and Rottenberg, M. (1979) Biochim Biophys Acta 567: 357–369.

    Article  PubMed  CAS  Google Scholar 

  • Brünger, A.T. (1992) X-PLOR Version 3.1 A System for Crystallography and NMR. Yale University Press, New Haven and London.

    Google Scholar 

  • Dafforn, A., Anderson, M., Ash, D., Campagna, J., Daniel, E., Horwood, R., Kerr, P., Rych, G. and Zappitelli, F. (1977) Biochim Biophys Acta 484: 375–385.

    Article  PubMed  CAS  Google Scholar 

  • Dougherty, D.A. and Stauffer, D.A. (1990) Science 250: 1558–1560.

    Article  PubMed  CAS  Google Scholar 

  • Gelb, M.H., Svaren, J.P. and Abeles, R.H. (1985) Biochemistry 24: 1813–1817.

    Article  PubMed  CAS  Google Scholar 

  • Gentry, M.K. and Doctor, B.P., 1991, in Cholinesterases: Structure, Function, Mechanism, Genetics and Cell Biology (Massoulié, J., Bacou, F., Barnard, E., Chatonnet, A., Doctor, B.P. and Quinn, D.M., Ed.), pp. 394–398, American Chemical Society, Washington, DC.

    Google Scholar 

  • Harel, M., Schalk, I., Ehret-Sabatier, L., Bouet, F., Goeldner, M., Hirth, C., Axelsen, P., Silman, I. and Sussman, J.L. (1993) Proc Natl. Acad Sci USA 90: 9031–9035.

    Article  PubMed  CAS  Google Scholar 

  • Harel, M., Sussman, J.L., Krejci, E., Bon, S., Chanal, P., Massoulié, J. and Silman, I. (1992) Proc Natl. Acad Sci USA 89: 10827–10831.

    Article  PubMed  CAS  Google Scholar 

  • Nachmansohn, D. and Wilson, I.B. (1951) Adv Enzymol 12: 259–339.

    CAS  Google Scholar 

  • Nair, H.K., Lee, K. and Quinn, D.M. (1993) J Am Chem Soc 115: 9939–9941.

    Article  CAS  Google Scholar 

  • Nolte, H.-J., Rosenberry, T.L. and Neumann, E. (1980) Biochemistry 19: 3705–3711.

    Article  PubMed  CAS  Google Scholar 

  • Ordentlich, A., Barak, D., Kronman, C., Flashner, Y., Leitner, M., Segall, Y., Ariel, N., Cohen, S., Velan, B. and Shafferman, A. (1993) J Biol Chem 268: 17083–17095.

    PubMed  CAS  Google Scholar 

  • Perutz, M.F. (1993) Phil Trans R Soc A 345: 105–112.

    Article  CAS  Google Scholar 

  • Quinn, D.M. (1987) Chem Rev 87: 955–979.

    Article  CAS  Google Scholar 

  • Radic, Z., Pickering, N.A., Vellom, D.C., Camp, S. and Taylor, P. (1993) Biochemistry 32: 12074–12084.

    Article  PubMed  CAS  Google Scholar 

  • Schalk, I., Ehret-Sabatier, L., Bouet, F., Goeldner, M. and Hirth, C., 1992, in Multidisciplinary Approaches to Cholinesterase Functions (Shafferman, A. and Velan, B., Ed.), pp. 117–120, Plenum Press, New York.

    Chapter  Google Scholar 

  • Shafferman, A., Velan, B., Ordentlich, A., Kronman, C., Grosfeld, H., Leitner, M., Flashner, Y., Cohen, S., Barak, D. and Ariel, N., 1992, in Multidisciplinary Approaches to Cholinesterase Functions (Shafferman, A. and Velan, B., Ed.), pp. 165–175, Plenum Press, New York.

    Chapter  Google Scholar 

  • Steitz, T.A. and Shulman, R.G. (1982) Ann Rev Biophys Bioeng 11: 419–444.

    Article  CAS  Google Scholar 

  • Sussman, J.L., Harel, M., Frolow, F., Oefner, C., Goldman, A., Toker, L. and Silman, I. (1991) Science 253: 872–879.

    Article  PubMed  CAS  Google Scholar 

  • Sussman, J.L., Harel, M., Frolow, F., Varon, L., Toker, L., Futerman, A.H. and Silman, I. (1988) J Mol Biol 203: 821–823.

    Article  PubMed  CAS  Google Scholar 

  • Taylor, P. and Lappi, S. (1975) Biochemistry 14: 1989–1997.

    Article  PubMed  CAS  Google Scholar 

  • Vellom, D.C., Radic, Z., Li, Y., Pickering, N.A., Camp, S. and Taylor, P. (1993) Biochemistry 32: 12–17.

    Article  PubMed  CAS  Google Scholar 

  • Verdonk, M.L., Boks, G.J., Kooijman, H., Kanters, J.A. and Kroon, J. (1993) J Computer-Aided Mol Design 7: 173–182.

    Article  CAS  Google Scholar 

  • Weise, C., Kreienkamp, H.-J., Raba, R., Pedak, A., Aaviksaar, A. and Hucho, F. (1990) EMBO J 9: 3885–3888.

    PubMed  CAS  Google Scholar 

  • Wilson, I.B. and Quan, C. (1958) Arch Biochem Biophys 73: 131–143.

    Article  PubMed  CAS  Google Scholar 

  • Wolfenden, R. (1976) Ann Rev Biophys Bioeng 5: 271–306.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sussman, J.L., Harel, M., Raves, M., Quinn, D.M., Nair, H.K., Silman, I. (1995). Structures of Complexes of Acetylcholinesterase with Covalently and Non-Covalently Bound Inhibitors. In: Quinn, D.M., Balasubramanian, A.S., Doctor, B.P., Taylor, P. (eds) Enzymes of the Cholinesterase Family. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1051-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1051-6_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1053-0

  • Online ISBN: 978-1-4899-1051-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics