Advertisement

Symmetries of Strongly Correlated Electrons

  • Vladimir E. Korepin
  • Fabian H. L. Eßler
Chapter
Part of the NATO ASI Series book series (NSSB, volume 343)

Abstract

Strongly correlated electronic systems are believed to be of great importance in relation with high-T c superconductivity. In the very center of attention are the two-dimensional Hubbard and t-J models. It is a very interesting fact that both these models are exactly solvable by Bethe Ansatz in one spatial dimension (the t-J model only at the supersymmetric point J = ±2t). There are indications that the two-dimensional models share important features with their one-dimensional analogs[1]. One of the many puzzling problems of strongly correlated electronic systems in one and two dimensions is the question of separation of spin and charge degrees of freedom[2]. In this talk we discuss the importance of symmetries for systems of correlated electrons. We show that both the excitation spectrum over the half-filled ground state and exact Scattering matrix of the Hubbard model are determined by the SO(4) symmetry of the Hubbard hamiltonian. We find that quasiparticles separate into spinless charge-carriers and chargeless spin-carriers, which very nicely and precisely reflets the spin- and charge separation at half filling.

Keywords

Excitation Spectrum Hubbard Model Symmetry Algebra HEISENBERG Chain Quasi Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    P.W. Anderson, Science 235 (1987) 1196.ADSCrossRefGoogle Scholar
  2. [2]
    G. Baskaran, Z. Zou, P.W. Anderson, Solid State Comm. 63 (1987) 973ADSCrossRefGoogle Scholar
  3. Z. Zou, P.W. Anderson, Phys. Rev. B37 (1988) 5594.ADSGoogle Scholar
  4. [3]
    W. Heisenberg, Z. Phys. 49 (1928) 619.ADSzbMATHCrossRefGoogle Scholar
  5. [4]
    H. Bethe, Z. Phys. 71 (1931) 205.ADSCrossRefGoogle Scholar
  6. [5]
    L.D. Faddeev, L. Takhtajan, J. Soviet Math. 24 (1984) 241.zbMATHCrossRefGoogle Scholar
  7. [6]
    L.D. Faddeev, L. Takhtajan, Phys. Lett. 85A (1981) 375.MathSciNetADSGoogle Scholar
  8. [7]
    V.E. Korepin, Theor. Mat. Phys. 76 (1980) 165.MathSciNetADSGoogle Scholar
  9. [8]
    V.E. Korepin, A.G. Izergin and N.M. Bogoliubov, Quantum Inverse Scattering Method, Correlation Functions and Algebraic Bethe Ansatz, Cambridge University Press, 1993Google Scholar
  10. [9]
    N. Andrei, J.H. Lowenstein, Phys. Lett. 91B (1980) 401.MathSciNetADSGoogle Scholar
  11. [10]
    C.N. Yang, Phys. Rev. Lett. 63 (1989) 2144.ADSCrossRefGoogle Scholar
  12. [11]
    O.J. Heilmann, E.H. Lieb, Ann. New York Acad. Sci. 172 (1971) 583.ADSCrossRefGoogle Scholar
  13. [12]
    C.N. Yang and S. Zhang, Mod. Phys. Lett. B4 (1990) 759.ADSGoogle Scholar
  14. [13]
    M. Pernici, Europhys. Lett. 12 (1990) 75.ADSCrossRefGoogle Scholar
  15. [14]
    I. Affleck in talk given at the Nato Advanced Study Institute on Physics, Geometry and Topology, Banff, August 1989.Google Scholar
  16. [15]
    E.H. Lieb, F.Y. Wu, Phys. Rev. Lett. 20 (1968) 1445.ADSCrossRefGoogle Scholar
  17. [16]
    C.N. Yang, Phys. Rev. Lett. 19 (1967) 1312.MathSciNetADSzbMATHCrossRefGoogle Scholar
  18. [17]
    A.A. Ovchinnikov, Sov. Phys. JETP 30 (1970) 1160.ADSGoogle Scholar
  19. [18]
    F. Woynarovich, J. Physics C16 (1983) 5293.ADSGoogle Scholar
  20. [19]
    F. Woynarovich, J. Physics C15 (1982) 85.ADSGoogle Scholar
  21. [20]
    F. Woynarovich, J. Physics C15 (1982) 97.ADSGoogle Scholar
  22. [21]
    A. Klümper, A. Schadschneider, J. Zittartz, Z. Phys. B78 (1990) 99.ADSCrossRefGoogle Scholar
  23. [22]
    T.C. Choy, W. Young, J. Physics C15 (1982) 521.ADSGoogle Scholar
  24. [23]
    N Kawakami, A. Okiji, Phys. Rev. B40 (1989) 7066.ADSGoogle Scholar
  25. [24]
    F.H.L. Eßler, V.E. Korepin, K. Schoutens, Nucl. Phys. B372 (1992) 559, Nucl. Phys. B384 (1992) 431, Phys. Rev. Lett. 67 (1991) 3848.ADSCrossRefGoogle Scholar
  26. [25]
    F. Woynarovich, J. Physics C16 (1983) 6593.ADSGoogle Scholar
  27. [26]
    F.H.L. Eßler, V.E. Korepin, SU(2) × SU(2) Invariant Scattering Matrix of the Hubbard Model, preprint ITP-SB-93-45Google Scholar
  28. [27]
    N. Andrei, Phys. Lett. 87A (1981) 299.ADSGoogle Scholar
  29. [28]
    Y. Nagaoka, Phys. Rev. 138 (1965) 1112.ADSCrossRefGoogle Scholar
  30. [29]
    D.R, Hamann, Phys. Rev. 158 (1967) 570.ADSCrossRefGoogle Scholar
  31. [30]
    J. Carmelo, P. Horsch, A.A. Ovchinnikov, Phys. Rev. B46 (1992) 14728.ADSGoogle Scholar
  32. [31]
    J. Carmelo, A.A. Ovchinnikov, J. Physics Cond. Mat. 3 (1991) 757.ADSCrossRefGoogle Scholar
  33. [32]
    A.B. Zamolodchikov, ALB. Zamolodchikov, Nucl. Phys. B379 (1992) 602.MathSciNetADSCrossRefGoogle Scholar
  34. [33]
    P. Fendley, Kinks in the Kondo-problem, preprint BUHEP-93-10.Google Scholar
  35. [34]
    F. A. Smirnov, Form factors in completely integrable models of quantum field theory, World Scientific, Singapore, 1992.zbMATHCrossRefGoogle Scholar
  36. [35]
    D. Uglov, V.E. Korepin, preprint ITP-SB-93-66.Google Scholar
  37. [36]
    B. Davies, O. Foda, M. Jimbo, T. Miwa, A. Nakayashiki, Comm. Math. Phys. 151 (1993) 89.MathSciNetADSzbMATHCrossRefGoogle Scholar
  38. [37]
    B.S. Shastry, J. Stat. Phys. 50 (1988) 57.MathSciNetADSzbMATHCrossRefGoogle Scholar
  39. [38]
    A. Förster, M. Karowski, Nucl. Phys. B396 (1993) 611.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Vladimir E. Korepin
    • 1
  • Fabian H. L. Eßler
    • 2
  1. 1.Institute for Theoretical PhysicsState University of New York at Stony BrookStony BrookUSA
  2. 2.Physikalisches Institut der Universität BonnBonnDeutschland

Personalised recommendations