Exact Results for Spin and Charge Dynamics of Electrons with Supersymmetry

  • Y. Kuramoto
Part of the NATO ASI Series book series (NSSB, volume 343)


In the presence of strong interactions, spin and charge of electrons behave differently. In the half-filled case of the Hubbard model with large on-site repulsion, for example, charge excitation has a gap but spin excitations remain gapless. The dynamics in the large energy scale can be understood in terms of perturbation theory. However study of the infrared behavior requires more sophisticated approach like the renormalization group or exact solution. Concept of the fixed point turns out to be vital in understanding the dynamics in the infrared limit. Although starting models have an extreme variety, the number of different fixed points are very few. Therefore classification of models according to their fixed points are useful.


Wave Function Hubbard Model Free Fermion Permutation Operator Charge Excitation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Y. Kuramoto and H. Yokoyama, Phys. Rev. Lett. 67, 1338 (1991); Physica C185–189, 1557 (1991).ADSCrossRefGoogle Scholar
  2. 2.
    H. Yokoyama and Y. Kuramoto, J. Phys. Soc. Jpn. 61, 3046 (1992).ADSCrossRefGoogle Scholar
  3. 3.
    Y. Kuramoto, Physica B186–188, 831 (1993).Google Scholar
  4. 4.
    N. Kawakami, Phys. Rev. B45, 7525 (1992).ADSGoogle Scholar
  5. 5.
    D.F. Wang, J.T. Liu and P. Coleman, Phys. Rev. B46, 6639 (1992).ADSGoogle Scholar
  6. 6.
    Z.N.C. Ha and F.D.M. Haldane, Phys. Rev. B46, 9359 (1992).ADSGoogle Scholar
  7. 7.
    F.D.M. Haldane, Phys. Rev. Lett. 60, 635 (1988).MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    B.S. Shastry, Phys. Rev. Lett. 60, 639 (1988).ADSCrossRefGoogle Scholar
  9. 9.
    A.P. Polychronakos, Phys. Rev. Lett. 69, 703 (1992); 70, 2329 (1993).MathSciNetADSzbMATHCrossRefGoogle Scholar
  10. 10.
    K. Hikami and M. Wadati, Phys. Lett. A173, 263 (1993).MathSciNetADSGoogle Scholar
  11. 11.
    B.S. Shastry and B. Sutherland, Phys. Rev. Lett. 70, 4092 (1993); 71, 5 (1993).MathSciNetGoogle Scholar
  12. 12.
    M. Fowler and J.A. Minahan, Phys. Rev. Lett. 70, 2325 (1993).ADSCrossRefGoogle Scholar
  13. 13.
    D.F. Wang and M. Gruber, preprint.Google Scholar
  14. 14.
    J. A. Minahan and A.P. Polychronakos, Phys. Lett. B302, 265 (1993).MathSciNetADSGoogle Scholar
  15. 15.
    K. Vacek, A. Okiji and N. Kawakami, preprint.Google Scholar
  16. 16.
    Y. Kuramoto and J. Zittartz, Phys. Rev. Lett. 72, 442 (1994).MathSciNetADSzbMATHCrossRefGoogle Scholar
  17. 17.
    E. Witten: Commun. Math. Phys. 92, 455 (1984).MathSciNetADSzbMATHCrossRefGoogle Scholar
  18. 18.
    J.F. Cornwell, Group Theory in Physics III, Supersymmetries and Infinite Dimensional Algebras (Academic Press, 1989).Google Scholar
  19. 19.
    P.B. Wiegmann, Phys. Rev. Lett. 60, 821 (1988)ADSCrossRefGoogle Scholar
  20. D. Förster, Phys. Rev. Lett. 63, 2140 (1989).ADSCrossRefGoogle Scholar
  21. 20.
    B. Sutherland, Phys. Rev. B38, 5589 (1988).MathSciNetGoogle Scholar
  22. 21.
    B. Sutherland, Phys. Rev. A4, 2019 (1971).ADSGoogle Scholar
  23. 22.
    F.D.M. Haldane et al., Phys. Rev. Lett. 69, 2021 (1992).MathSciNetADSzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Y. Kuramoto
    • 1
  1. 1.Department of PhysicsTohoku UniversitySendai 980Japan

Personalised recommendations