One-Dimensional Luttinger Liquid of Particles for a Class of Infinitely Repulsive Interactions: Exact Solution

  • G. Gómez-Santos
Part of the NATO ASI Series book series (NSSB, volume 343)


A model for interacting spinless fermions in one dimension is solved exactly and later extended to the spin case. The solution is based on a mapping where interactions appear as geometric constraints. It is simple enough to allow a complete Luttinger liquid characterization, including criticality. This geometric interpretation of interactions is shown to be a convenient framework to understand criticality in any Luttinger liquid, and is applied to recover some transport properties in an elementary way.


Fermi Liquid Free Fermion Interparticle Spacing Luttinger Liquid Spin Sector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    See, for instance, M. Gaudin, La fonction d’onde de Bethe (Masson, Paris, 1983).zbMATHGoogle Scholar
  2. [2]
    See, for instance, J. P. Pouget, in Low-Dimensional Conductors and Superconductors, edited by D. Jerome and L. Caron (Plenum, New York, 1987).Google Scholar
  3. [3]
    V. J. Emery, in Highly Conducting One-Dimensional Solids, edited by J. T. Devreese et al. (Plenum, New York, 1979).Google Scholar
  4. [4]
    J. Solyom, Adv. Phys. 28, 201 (1979).ADSCrossRefGoogle Scholar
  5. [5]
    P. W. Anderson, Phys. Rev. Lett. 64, 1839 (1990); 65, 2306 (1990).ADSCrossRefGoogle Scholar
  6. [6]
    F. D. M. Haldane, Phys. Rev. Lett. 45, 1358 (1980); 47, 1840 (1981); J. Phys. C 14, 2585 (1981).MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    D. C. Mattis and E. H. Lieb, J. Math. Phys. 6, 304 (1965).MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    M. den Nijs, Phys. Rev. B 23, 6111 (1981); also in Phase Transitions and Critical Phenomena, vol. 12 (Academic Press, London, 1988).ADSCrossRefGoogle Scholar
  9. [9]
    G. Gómez-Santos, Phys. Rev. Lett. 70, 3780 (1993).ADSCrossRefGoogle Scholar
  10. [10]
    H. Frahm and V. E. Korepin, Phys. Rev. B 42, 10553 (1990).ADSCrossRefGoogle Scholar
  11. [11]
    P. A. Bares and G. B. Blatter, Phys. Rev. Lett. 64, 2567 (1990)MathSciNetADSzbMATHCrossRefGoogle Scholar
  12. N. Kawakami and S.-K. Yang, Phys. Rev. Lett. 65, 2309 (1990).MathSciNetADSzbMATHCrossRefGoogle Scholar
  13. [12]
    E. H. Lieb and F. Y. Wu, Phys. Rev. Lett. 20, 1445 (1968).ADSCrossRefGoogle Scholar
  14. [13]
    J. Villain and P. Bak, J. Physique 42, 657 (1981).CrossRefGoogle Scholar
  15. [14]
    J. Hubbard, Phys. Rev. B 17, 494 (1978).ADSCrossRefGoogle Scholar
  16. [15]
    G. V. Uimin and V. L. Pokrovsky, J. Physique 44, L865 (1983)Google Scholar
  17. L. A. Bol’shov, V. L. Pokrovsky and G. V. Uimin, J. Stat. Phys. 38, 191 (1985).ADSCrossRefGoogle Scholar
  18. [16]
    C. L. Kane and M. P. A. Fisher, Phys. Rev. Lett. 68, 1220 (1992).ADSCrossRefGoogle Scholar
  19. [17]
    M. Ogata and H. Shiba, Phys. Rev. B 41, 2326 (1990)ADSCrossRefGoogle Scholar
  20. A. Parola and S. Sorella, Phys. Rev. Lett. 64, 1831 (1990).MathSciNetADSzbMATHCrossRefGoogle Scholar
  21. [18]
    H. J. Schulz, Phys. Rev. Lett. 64, 2831 (1990); Int. J. Mod. Phys. B 5, 57 (1991).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • G. Gómez-Santos
    • 1
  1. 1.Departamento de Física de la Materia CondensadaUniversidad Autónoma de MadridMadridSpain

Personalised recommendations