The Hubbard Model and Its Application to Conjugated π-Electron Systems

  • Dionys Baeriswyl
  • Eric Jeckelmann
Part of the NATO ASI Series book series (NSSB, volume 343)


When the inventors of the Hubbard model (Anderson, 1959; Hubbard, 1963; Gutzwiller, 1963; Kanamori 1963) proposed their simplified one-band Hamiltonian with only on-site interaction, they had in mind the d electrons in transition metals. More recently, the Hubbard model has been also advocated in the context of high-temperature superconductors (Anderson, 1988). However, it is a priori not obvious why a one-band model should be able to describe transition metal compounds with partly degenerate d bands, often hybridized with s and p states, and, in fact, there are examples where a single-band model fails to capture some important aspects (Kanamori, 1990). This question has been extensively discussed for the layered copper oxides. Several calculations indicate that in this case the one-band Hubbard model or the related t — J model do describe the low-lying charge and spin excitations (Zhang and Rice, 1988; Luo and Bickers, 1993), but the detailed mapping appears to be rather complicated (Meinders et al., 1993).


Hubbard Model Wannier Function Double Occupancy Extended Hubbard Model Layered Copper Oxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, P.W., 1959, New approach to the theory of superexchange interactions, Phys. Rev. 115:2.MathSciNetADSzbMATHCrossRefGoogle Scholar
  2. Anderson, P.W., 1988, 50 years of the Mott phenomenon: insulators, magnets, solids and superconductors as aspects of strong-repulsion theory, in: “Frontiers and Borderlines in Many-Particle Physics”, R.A. Broglia and J.R. Schrieffer, eds., North Holland, Amsterdam.Google Scholar
  3. Antropov, V.P., Gunnarsson, O., and Jepsen, O., 1992, Coulomb integrals and model Hamiltonians for C 60, Phys. Rev. B 46:13647.ADSCrossRefGoogle Scholar
  4. Baeriswyl, D., Campbell, D.K., and Mazumdar, S., 1992, in: “Conjugated Conducting Polymers”, H. Kiess, ed., Springer Series in Solid-State Sciences, vol. 102, Berlin.Google Scholar
  5. Baeriswyl, D., and Maki, K., 1985, Electron correlations in polyacetylene, Phys. Rev. B 31:6633.ADSCrossRefGoogle Scholar
  6. Baeriswyl, D., 1991, On the stability of local states in conjugated polymers, Synth. Met 41-43:3585.CrossRefGoogle Scholar
  7. Campbell, D.K., Gammel, J.T., and Loh, E.Y., 1990, Modeling electron-electron interactions in reduced-dimensional materials: bond-charge Coulomb repulsion and dimerization in Peierls-Hubbard models, Phys. Rev. B 42:475.ADSCrossRefGoogle Scholar
  8. Chakravarty, S., Gelfand, M.P., and Kivelson, S., 1991, Electronic correlation effects and superconductivity in doped fullerenes, Science 254:970.ADSCrossRefGoogle Scholar
  9. Chiang, C.K., Fincher, C.R., Park, Y.W., Heeger, A.J., Shirakawa, H., Louis, E.J., Gau, S., and MacDiarmid, A.G., 1977, Electrical conductivity in doped polyacetylene, Phys. Rev. Lett. 39:1098.ADSCrossRefGoogle Scholar
  10. de Coulon, V., Martins, J.L., and Reuse, F., 1992, Electronic structure of neutral and charged C 60 clusters, Phys. Rev. B 45:13671.ADSCrossRefGoogle Scholar
  11. Fink, J., and Leising, G., 1986, Momentum-dependent dielectric functions of oriented trans-polyacetylene, Phys. Rev. B 34:5320.ADSCrossRefGoogle Scholar
  12. Friedberg, R., Lee, T.D., and Ren, H.C., 1992, Parity doublets and the pairing mechanism in C 60, Phys. Rev. B 46:14150.ADSCrossRefGoogle Scholar
  13. Friedman, B., and Kim, J., 1992, Estimate of Hubbard U for C 60 by use of optical absorption, Phys. Rev. B 46:8638.ADSCrossRefGoogle Scholar
  14. Fulde, P., 1991, Electron Correlations in Molecules and Solids, Springer Series in Solid-State Sciences, vol. 100, Berlin.Google Scholar
  15. Fye, R.M., Martins, M. J., and Scalettar, R.T., 1990, Binding of holes in one-dimensional Hubbard chains, Phys. Rev. B 42:6809.ADSCrossRefGoogle Scholar
  16. Goff, W.E., and Phillips, P., 1993, Consequences of extended-range interactions in the correlation-induced model of superconductivity in the fullerenes, Phys. Rev. B 48:3491.ADSCrossRefGoogle Scholar
  17. Gutzwiller, M.C., 1963, Effect of correlation on the ferromagnetism of transition metals, Phys. Rev. Lett. 10:159.ADSCrossRefGoogle Scholar
  18. Hebard, A.F., 1992, Superconductivity in doped fullerenes, Physics Today, November, p. 26.Google Scholar
  19. Heeger, A.J., Kivelson, S., Schrieffer, J.R., and Su, W.P., 1988, Solitons in conducting polymers, Rev. Mod. Phys. 60:781.ADSCrossRefGoogle Scholar
  20. Hirsch, J.E., and Marsiglio, F., 1989, Superconducting state in an oxygen hole metal, Phys. Rev. B 39:11515.ADSCrossRefGoogle Scholar
  21. Hirsch, J.E., 1993, Electron-and hole-hopping amplitudes in a diatomic molecule: p orbitals, Phys. Rev. B 48:9815.ADSCrossRefGoogle Scholar
  22. Horsch, P., 1981, Correlation effects on bond alternation in polyacetylene, Phys. Rev. B 24:7351.ADSCrossRefGoogle Scholar
  23. Hubbard, J., 1963, Electron correlations in narrow energy bands, Proc. R. Soc. London A 276:238.ADSCrossRefGoogle Scholar
  24. Hudson, B.S., Kohler, B.E., and Schulten, K., 1982, Linear polyene electronic structure and potential surfaces, in: “Excited States”, E.C. Lim, ed., vol.6, Academic Press, London.Google Scholar
  25. Jeckelmann, E., and Baeriswyl, D., 1994, The metal-insulator transition in polyacetylene: variational study of the Peierls-Hubbard model, Synth. Met, to be published.Google Scholar
  26. Kakitani, T., 1974, Theoretical study of optical absorption curves of molecules, Prog. Theor. Phys. 51:656.ADSCrossRefGoogle Scholar
  27. Kanamori, J., 1963, Electron correlation and ferromagnetism of transition metals, Prog. Theor. Phys. 30:275.ADSzbMATHCrossRefGoogle Scholar
  28. Kanamori, J., 1990, Interplay between electronic structure and correlation through the s-d mixing in transition metal systems, Prog. Theor. Phys. Suppl. 101:1.ADSCrossRefGoogle Scholar
  29. Kivelson, S., Su, W.P., Schrieffer, J.R., and Heeger, A.J., 1987, Missing bond charge repulsion in the extended Hubbard model: effects in polyacetylene, Phys. Rev. Lett. 58:1899.ADSCrossRefGoogle Scholar
  30. Kertész, M., 1982, Electronic structure of polymers, Adv. Quantum Chem. 15:161.ADSCrossRefGoogle Scholar
  31. König, G., and Stollhoff, G., 1990, Why polyacetylene dimerizes: results of ab initio computations, Phys. Rev. Lett. 65:1239.ADSCrossRefGoogle Scholar
  32. Lof, R.W., van Veenendaal, M.A., Koopmans, B., Jonkman, H.T., and Sawatzky, G.A., 1992, Band gap, excitons, and Coulomb interaction in solid C 60, Phys. Rev. Lett. 68:3924.ADSCrossRefGoogle Scholar
  33. Luo, J., and Bickers, N.E., 1993, Self-consistent weak-coupling study of the three-band CuO 2 model, Phys. Rev. B 47:12153.ADSCrossRefGoogle Scholar
  34. Martin, R.L., and Ritchie, J.P., 1993, Coulomb and exchange interactions in \( C_{60}^{n - } \), Phys. Rev. B 48:4845.ADSCrossRefGoogle Scholar
  35. Meinders, M.B.J., Eskes, H., and Sawatzky, G.A., 1993, Spectral-weight transfer: breakdown of low-energy-scale sum rules in correlated systems, Phys. Rev. B 48:3916.ADSCrossRefGoogle Scholar
  36. Ohno, K., 1964, Some remarks on the Pariser-Parr-Pople method, Theor. Chim. Acta 2:219.CrossRefGoogle Scholar
  37. Ovchinnikov, A.A., Ukrainskii, I.I., and Kventsel, G.V., 1973, Theory of one-dimensional Mott semiconductors and the electronic structure of long molecules having conjugated bonds, Sov. Phys. Usp. 15:575.ADSCrossRefGoogle Scholar
  38. Paloheimo, J., and von Boehm, J., 1993, Density-functional study of undoped and doped trans-polyacetylene, Phys. Rev. B 48:16948, and references cited therein.ADSCrossRefGoogle Scholar
  39. Pariser, R., and Parr, R.G., 1953, A semi-empirical theory of the electronic spectra and electronic structure of complex unsaturated molecules, J. Chem. Phys. 21:767.ADSCrossRefGoogle Scholar
  40. Parr, R.G., Craig, D.P., and Ross, I.G., 1950, Molecular orbital calculations of the lower excited electronic levels of benzene, configuration interaction included, J. Chem. Phys. 18:1561.ADSCrossRefGoogle Scholar
  41. Salkola, M.I., 1994, Low-energy excitations of neutral C 60, Phys. Rev. B 49:4407.ADSCrossRefGoogle Scholar
  42. Scherrer, H., and Stollhoff, G., 1993, Effects of the electron interaction on the electronlattice coupling in C 60, Phys. Rev. B 47:16570.ADSCrossRefGoogle Scholar
  43. Strack, R., and Vollhardt, D.,1994, unpublished.Google Scholar
  44. Zhang, F.C., and Rice, T.M., 1988, Effective Hamiltonian for the superconducting Cu oxides, Phys. Rev. 537:3759.Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Dionys Baeriswyl
    • 1
  • Eric Jeckelmann
    • 1
  1. 1.Institut de Physique théoriqueUniversité, PérollesFribourgSwitzerland

Personalised recommendations