Skip to main content

Metal to Insulator Transition in the 2-D Hubbard Model: A Slave-Boson Approach

  • Chapter
The Hubbard Model

Part of the book series: NATO ASI Series ((NSSB,volume 343))

Abstract

Since the discovery of the High-T c superconductors, [1], the Hubbard model has been the subject of intense investigations following Anderson’s proposal [2] that the model should capture the essential physics of the cuprate superconductors. From the earlier attempts to obtain the magnetic phase diagram on the square lattice (for an overview see the book by Mattis [3]) one can deduce that antiferromagnetic order exists in the vicinity of the half-filled band whereas ferromagnetic ordering might take place in the phase diagram for strong repulsive interaction strength and moderate hole doping of the half-filled band. Obviously antiferromagnetic and ferromagnetic orders compete in this part of the phase diagram. More recent calculations [4] established that the ground state of the Hubbard model on the square lattice shows long-ranged antiferromagnetic ordering with a charge transfer gap. However, the problem of mobile holes in an antiferromagnetic background remains mostly unsolved. Suggestions for a very wide ferromagnetic domain in the phase diagram based on the restricted Hartree-Fock Approximation have been made by several authors [5] on the cubic lattice, and on the square lattice [6–8]. This domain appears for large interaction and moderate hole doping in which case the Hartree-Fock Approximation ceases to be controlled. Within this framework one expects to obtain reliable results for moderate U where the paramagnetic phase is indeed unstable towards an incommensurate spin structure at a critical density n c (U) [9]. The Gutzwiller Approximation (GA) [10–12] has been applied [13], even for large U, yielding results similar to the Hartree-Fock Approximation. However, for large U, a ferromagnetic domain appears only if the density is larger than some critical value. In the Kotliar and Ruckenstein slave boson technique [14] the GA appears as a saddle-point approximation of this field theoretical representation of the Hubbard model. In the latter a metal-insulator transition occurs at half-filling as recently discussed by Lavagna [15]. The contribution of the thermal fluctuations has been calculated [16] and turned out to be incomplete as this representation, even though exact, is not manifestly spin-rotation invariant. Spin-rotation invariant [17] and spin and charge-rotation invariant [18] formulations have been proposed and the first one was used to calculate correlation functions [19] and spin fluctuation contributions to the specific heat [20]. Comparisons of ground state energy with Quantum Monte-Carlo simulations, including antiferromagnetic ordering [21] and spiral states [22], or with exact diagonalisation data [23] have been done and yield excellent agreement, and a magnetic phase diagram has been proposed [24].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. See, for example, Proceedings of the International Conference on Materials and Mechanisms of Superconductivity-High Temperature Superconductors II, Physica C 162-164, (1989).

    Google Scholar 

  2. Anderson P.W., in “Frontiers and Borderlines in Many-Particle Physics”, Proceedings of the International School of Physics, Enrico Fermi, Varenna 1987, eds. Broglia R.A. and Schrieffer, J.R. (North Holland, Amsterdam 1988), p. 1.

    Google Scholar 

  3. Mattis D.C., in “The theory of Magnetism I (Springer Series in Solid State Sciences 17)”, ed. Fulde P. (Springer, Berlin 1981).

    Google Scholar 

  4. Liang S., Douçot B. and Anderson P.W., Phys. Rev. Lett. 61 365 (1988)

    Article  ADS  Google Scholar 

  5. Trivedi N. and Ceperley D., Phys. Rev. B 40 2737 (1989).

    Article  ADS  Google Scholar 

  6. Penn D.R., Phys. Rev. 142 350 (1966)

    Article  ADS  Google Scholar 

  7. Cyrot M.J., J. Physique 33 125 (1972).

    Article  Google Scholar 

  8. Dzierzawa M., Z. Phys. B-Condensed Matter 86 49 (1992).

    Article  ADS  Google Scholar 

  9. John S., Voruganti P. and Goff W., Phys. Rev. B 43 13365 (1991).

    Article  ADS  Google Scholar 

  10. Yoshioka D.J., Phys. Soc. Jpn. 58, 1516 (1989)

    Article  ADS  Google Scholar 

  11. Jayaprakash G., Krishnamurthy H.R., and Sarker S., Phys. Rev. B 40, 2610 (1989)

    Article  ADS  Google Scholar 

  12. Kane C.L., Lee P.A., Ng T.K., Chakraborty B. and Read N., Phys. Rev. B 41, 2653 (1990).

    Article  ADS  Google Scholar 

  13. Schulz H., Phys. Rev. Lett. 64 1445 (1990).

    Article  ADS  Google Scholar 

  14. Gutzwiller M., Phys. Rev. Lett. 10, 159 (1963). Phys. Rev. 134 A, 923 (1964); 137 A, 1726 (1965).

    Article  ADS  Google Scholar 

  15. Brinkman W.F. and Rice T.M., Phys. Rev. B 2, 4302 (1970).

    Article  ADS  Google Scholar 

  16. Vollhardt D., Rev. Mod. Phys. 56, 99 (1984).

    Article  ADS  Google Scholar 

  17. Metzner W. and Vollhardt D., Phys. Rev. Lett. 62, 324 (1989)

    Article  ADS  Google Scholar 

  18. Metzner W., Z. Phys. B-Condensed Matter 77 253 (1989).

    Article  ADS  Google Scholar 

  19. Kotliar G. and Ruckenstein A.E., Phys. Rev. Lett. 57, 1362 (1986).

    Article  MathSciNet  ADS  Google Scholar 

  20. Lavagna M., Phys. Rev. B 41, 142 (1990); Helvetica Physica Acta 63, 310 (1990); Int. J. Mod. Phys. B 5, 885 (1991).

    Article  ADS  Google Scholar 

  21. Rasul J.W., Li T., J. Phys. C 21, 5119 (1988)

    Article  ADS  Google Scholar 

  22. Li T.C., Rasul J.W., Phys. Rev. B 39, 4630 (1989)

    Article  ADS  Google Scholar 

  23. Rasul J.W., Li T., Beck H., Phys. Rev. B 39, 4191 (1989).

    Article  ADS  Google Scholar 

  24. Li T., Wölfle P., and Hirschfeld P.J., Phys. Rev. B 40, 6817 (1989).

    Article  ADS  Google Scholar 

  25. Frésard R. and Wölfle P., Int. J. of Mod. Phys. B 6, 685 (1992), Proceedings of the Adriatico Research Conference and Miniworkshop “Strongly Correlated Electrons Systems III”, eds. Baskaran G., Ruckenstein A.E., Tossati E., Yu Lu; Frésard R. and Wölfle P., Erratum of ibid, Int. J. of Mod. Phys. B 6, 3087 (1992).

    Article  ADS  Google Scholar 

  26. Li T., Sun Y.S. and Wölfle P., Z. Phys. B-Condensed Matter 82, 369 (1991).

    Article  ADS  Google Scholar 

  27. Wölfle P. and Li T., Z. Phys. B-Condensed Matter 78, 45 (1990).

    Article  ADS  Google Scholar 

  28. Lilly L., Muramatsu A. and Hanke W., Phys. Rev. Lett. 65, 1379 (1990).

    Article  ADS  Google Scholar 

  29. Frésard R., Dzierzawa M. and Wölfle P., Europhys. Lett. 15, 325 (1991).

    Article  ADS  Google Scholar 

  30. Frésard R. and Wölfle P., J. Phys. Condensed Matter 4 3625 (1992).

    Article  ADS  Google Scholar 

  31. Möller B., Doll K. and Frésard R., J. Phys. Condensed Matter 5 4847 (1993).

    Article  ADS  Google Scholar 

  32. Sorella S. and Tossati E., Europhys. Lett. 19, 699 (1992).

    Article  ADS  Google Scholar 

  33. Doll K., Dzierzawa M., Frésard R. and Wölfle P., Z. Phys. B-Condensed Matter 90, 297 (1993).

    Article  ADS  Google Scholar 

  34. Raimondi R. and Castellani C, Preprint.

    Google Scholar 

  35. Zimmermann W., Frésard R. and Wölfle P., Preprint.

    Google Scholar 

  36. Moreo A., Phys. Rev. B 48, 3380 (1993).

    Article  ADS  Google Scholar 

  37. Tohyama T., Okuda H. and Maekawa S., Physica C 215, 382 (1993).

    Article  ADS  Google Scholar 

  38. Chen L. and Tremblay A.-M. S., Preprint.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Frésard, R., Doll, K. (1995). Metal to Insulator Transition in the 2-D Hubbard Model: A Slave-Boson Approach. In: Baeriswyl, D., Campbell, D.K., Carmelo, J.M.P., Guinea, F., Louis, E. (eds) The Hubbard Model. NATO ASI Series, vol 343. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1042-4_43

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1042-4_43

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1044-8

  • Online ISBN: 978-1-4899-1042-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics