Advertisement

On Electrical Properties of Chalcogenide Glassy Semiconductors in the Framework of Hubbard Model with Negative Correlation Energy

  • Semën Savransky
Chapter
  • 380 Downloads
Part of the NATO ASI Series book series (NSSB, volume 343)

Abstract

The concept1 of the native centres having the effective negative Hubbard correlation energy (NUC) well describes properties of chalcogenide glassy semiconductors (CGS)2–7.

Keywords

Hubbard Model Amorphous Semiconductor Soft Potential Extended Hubbard Model Negative Correlation Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P.W. Anderson, Model for electronic structure of amorphous semiconductors. Phys. Rev. Lett. 34:953 (1975).ADSCrossRefGoogle Scholar
  2. 2.
    N.F Mott and E.A. Davis, “Electronic Processes in Non-Crystalline Materials”, Clarendon Press, Oxford (1979).Google Scholar
  3. 3.
    M.I. Klinger, Glassy disordered systems: Topology, atomic dynamics and localized electron states, Phys. Repts. 165:275 (1988).ADSCrossRefGoogle Scholar
  4. 4.
    S.D. Savransky, Charge carriers kinetics during glass transition, Fiz. Khim. Stekla (Soviet J. Phys. Chem. Glasses) 13:659 (1987). (On Russian).Google Scholar
  5. 5.
    S.D. Savransky, Local pairs superconductivity in glassy and crystalline As2Te3, Solid State Communications 79:843 (1991).ADSCrossRefGoogle Scholar
  6. 6.
    S.D. Savransky, Hopping Auger recombination at the negative U centres in amorphous semiconductors, Philosophical Magazine Letters. 66:91 (1992).ADSCrossRefGoogle Scholar
  7. 7.
    B.L. Gelmont, B.T. Kolomiets and K.D. Tsendin, Impurity conduction of chalcogenide vitreous semiconductors, Physica Status Solidi A91:319 (1985).ADSGoogle Scholar
  8. 8.
    B.T. Kolomiets, V.M. Luibin, and V.P. Shilo, Anisotropy of electrical conductivity in chalcogenide glassy fibers, Pis’ma ZhETF (Soviet Phys. JETP Lett.) 17:577 (1973).ADSGoogle Scholar
  9. 9.
    R. Micnas, J. Ranninger and S. Robaszkiewicz, Superconductivity in narrow-band systems with local attractive interactions, Rev. Mod. Phys. 62:113 (1990).ADSCrossRefGoogle Scholar
  10. 10.
    G.A. Bordovsky and M.R. Kanichev, Capacitance spectroscopy of localized states in chalcogenide glassy semiconductors, Fizika i Techn. Poluprovodn. (Soviet Phys. Semiconductors) 24:527 (1990).Google Scholar
  11. 11.
    J.J. Hauser, Conductivity (ac and dc) in III–V amorphous semiconductors and chalcogenide glasses, Phys. Rev. B. 31:2133 (1985).MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    G. Pfister and H. Scher, Time-dependent electrical transport in amorphous solids: As2Se3, Phys. Rev. B. 15:2062 (1977).ADSCrossRefGoogle Scholar
  13. 13.
    J.H. Ziman “Principles of the Theory of Solids”, Cambridge University Press, Cambridge (1972).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Semën Savransky
    • 1
  1. 1.Departamento de Fisica de Materiales, Apdo. 1072Universidad del Pais VascoSan SebastianSpain

Personalised recommendations