Advertisement

Electron Spectroscopy and Hubbard: Issues and Opportunities

  • J. W. Allen
  • R. Claessen
  • R. O. Anderson
  • W. P. Ellis
  • C. Janowitz
  • C. G. Olson
  • J.-H. Park
  • L. H. Tjeng
  • C. T. Chen
  • P. Metcalf
  • H. R. Harrison
  • M. C. de Andrade
  • E. A. Early
  • S. Harm
  • R. F. Jardim
  • M. Kalning
  • L.-Z. Liu
  • R. Manzke
  • M. B. Maple
  • S.-J. Oh
  • M. Skibowski
Chapter
Part of the NATO ASI Series book series (NSSB, volume 343)

Abstract

A fundamental theoretical characterization of a many-body system such as that defined by the Hubbard Hamiltonian is the single particle Green’s function G. Single particle electron spectroscopies provide a means to measure the spectral weight of G and so these spectroscopies are in principle a very powerful experimental means of testing theoretical predictions for the Hubbard model. This article gives an overview of problems and opportunities associated with the application of electron spectroscopy to this problem.

Keywords

Fermi Surface Hubbard Model Electron Spectroscopy Spectral Weight Early Transition Metal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Photoemission in Solids I: General Principles (Topics in Applied Physics, Vol. 26), edited by L. Ley and M. Cardona (Springer-Verlag, Berlin, 1979).Google Scholar
  2. 2.
    J.J. Yeh and I. Lindau, At. Data Nucl. Data Tables 32, 1 (1985).ADSCrossRefGoogle Scholar
  3. 3.
    J.W. Allen in Synchrotron Radiation Research: Advances in Surface and Interface Science, Vol. 1: Techniques, edited by R.Z. Bachrach (Plenum Press, New York, 1992), p. 253.CrossRefGoogle Scholar
  4. 4.
    S. Tougaard, Surface and Interface Analysis 11, 453 (1984).CrossRefGoogle Scholar
  5. 5.
    N.V. Smith, Chapt. 6 in Ref. 1.Google Scholar
  6. 6.
    J.B. Pendry, in Photoemission and the Electronic Properties of Surfaces (Wiley, New York, 1978).Google Scholar
  7. 7.
    W. Bardyszewski and L. Hedin, Physica Scripta 32, 439 (1985).ADSCrossRefGoogle Scholar
  8. 8.
    G. van der Laan, C. Westra, C. Haas, and G.A. Sawatzky, Phys. Rev. B 23, 4369 (1981)ADSCrossRefGoogle Scholar
  9. G. van der Laan, Solid State Commun. 42, 165 (1982).ADSCrossRefGoogle Scholar
  10. 9.
    A. Fujimori and F. Minamai, Phys. Rev. B 30, 957 (1984).ADSCrossRefGoogle Scholar
  11. 10.
    G.A. Sawatzky and J.W. Allen, Phys. Rev. Lett. 53, 2339 (1984).ADSCrossRefGoogle Scholar
  12. 11.
    S. Hüfner, Solid State Commun. 53, 707 (1985).ADSCrossRefGoogle Scholar
  13. 12.
    J. Zaanen, G.A. Sawatzky and J.W. Allen, Phys. Rev. Lett. 55, 418 (1985)ADSCrossRefGoogle Scholar
  14. J. Zaanen, G.A. Sawatzky and J.W. Allen, J. Magn. and Mag. Mat. 54–57, 607 (1986).CrossRefGoogle Scholar
  15. 13.
    The bound states recall Hartree Fock solutions for multiple charge states of transition metal impurities in a semiconductor gap.Google Scholar
  16. F.D.M. Haldane and P.W. Anderson, Phys. Rev. B 13, 2553 (1976).ADSCrossRefGoogle Scholar
  17. 14.
    F.C. Zhang and T.M. Rice, Phys. Rev. B 37, 3759 (1988).ADSCrossRefGoogle Scholar
  18. 15.
    J.W. Allen, J. Magn. and Mag. Mat. 47–48, 257 (1985).Google Scholar
  19. 16.
    M.B.J. Meinders, H. Eskes and G.A. Sawatzy, Phys. Rev. B 48, 3916 (1993).ADSCrossRefGoogle Scholar
  20. 17.
    D.B. McWhan, A. Menth, J.P. Remeika, W.F. Brinkman and T.M. Rice, Phys. Rev. B 7, 1920 (1973)ADSCrossRefGoogle Scholar
  21. S.A. Shivashankar and J.M. Honig, Phys. Rev. B 28, 5695 (1983).ADSCrossRefGoogle Scholar
  22. 18.
    J.-H. Park, thesis, University of Michigan, 1993, unpublished.Google Scholar
  23. 19.
    J.-H. Park, L.H. Tjeng, J.W. Allen, R. Claessen, C.T. Chen, P. Metcalf, and H.R. Harrison, to be published.Google Scholar
  24. 20.
    L.H. Tjeng, C.T. Chen, J. Ghijsen, P. Rudolph and F. Sette, Phys. Rev. Lett. 67, 501 (1991).ADSCrossRefGoogle Scholar
  25. 21.
    O. Gunnarsson and T.C. Li, Phys. Rev. B 36, 9488 (1987).ADSCrossRefGoogle Scholar
  26. 22.
    O. Gunnarson and K. Schönhammer, Phys. Rev. B 28, 4315 (1983).ADSCrossRefGoogle Scholar
  27. 23.
    L.H. Tjeng, C.T. Chen and S.-W. Cheong, Phys. Rev. B 45, 8205 (1992).ADSCrossRefGoogle Scholar
  28. 24.
    J. Zaanen and G.A. Sawatzky, J. Solid State Chem. 88, 8 (1990).ADSCrossRefGoogle Scholar
  29. 25.
    G.A. Sawatzky and D. Post, Phys. Rev. B 20, 1546 (1979).ADSCrossRefGoogle Scholar
  30. 26.
    J.W. Allen, CG. Olson, M.B. Maple, J.-S. Kang, L.Z. Liu, J.-H. Park, R.O. Anderson, W.P. Ellis, J.T. Markert, Y. Dalichaouch and R. Liu, Phys. Rev. Lett. 64, 595 (1990).ADSCrossRefGoogle Scholar
  31. 27.
    H. Namatame, A. Fujimori, Y. Tokura, M. Nakamura, K. Yamguchi. A. Misu, H. Matsubara, S. Suga, H. Eisaki, T. Ito, H. Takagi and S. Uchida, Phys. Rev. B 41, 7205 (1990).ADSCrossRefGoogle Scholar
  32. 28.
    E.H. Lieb and F.Y. Wu, Phys. Rev. Lett. 20, 1445 (1968); see also, results for the negative-U case in Fig. 2 ofADSCrossRefGoogle Scholar
  33. M. Takahashi, Prog. Theor. Phys. 42, 1098 (1989), and use the particle-hole transformation change of variables, U<0→U>0, <Sz>→(<n>-1)/2, H→μ.ADSCrossRefGoogle Scholar
  34. 29.
    E. Dagotto, A. Moreo, F. Ortolani, J. Riera and D.J. Scalapino, Phys. Rev. Lett. 67, 1918 (1991).ADSCrossRefGoogle Scholar
  35. 30.
    T. Tohymam and S. Maekawa, J. Phys. Soc. Jpn. 60, 53 (1991).ADSCrossRefGoogle Scholar
  36. 31.
    H. Eskes and G. Sawatzky, Phys. Rev. B 43, 119 (1991).ADSCrossRefGoogle Scholar
  37. 32.
    E. Dagotto, A. Moreo, F. Ortolani, D. Poilblanc and J. Riera, Phys. Rev. B 45, 10741 (1992).ADSCrossRefGoogle Scholar
  38. 33.
    E. Dagotto, F. Ortolani and D. Scalapino, Phys. Rev. B 46, 3183 (1992).ADSCrossRefGoogle Scholar
  39. 34.
    P.W. Leung, Z. Liu, E. Manousakis, M.A. Novotny and P.E. Oppenheimer, Phys. Rev. B 46, 11779 (1992).ADSCrossRefGoogle Scholar
  40. 35.
    R.O. Anderson, R. Claessen, J.W. Allen, C.G. Olson, C. Janowitz, L.-Z. Liu, J.-H. Park, M.B. Maple, Y. Dalichaouch, M.D. de Andrade, R.F. Jardim, E.A. Early, S.-J. Oh and W.P. Ellis, Phys. Rev. Lett. 70, 3163 (1993).ADSCrossRefGoogle Scholar
  41. 36.
    S. Uchida, H. Takagi and Y. Tokura, Physica (Amsterdam) 162C, 1677 (1989).ADSGoogle Scholar
  42. 37.
    D.M. King, Z.-X. Shen, D.S. Dessau, B.O. Wells, W.E. Spicer, A.J. Arko, D.S. Marshall, J. DiCarlo, A.G. Loeser, C.-H. Park, E.R. Ratner, J.L. Peng, Z.Y. Li and R.L. Greene, Phys. Rev. Lett. 70, 3159 (1993).ADSCrossRefGoogle Scholar
  43. 38.
    J.W. Allen, L.-Z. Liu, R. Claesson, R.O. Anderson, J.-H. Park, J.-S. Kang, C.L. Seaman, M.B. Maple, Y. Dalichaouch, M.D. Lopez de la Torre, C.G. Olson, W.P. Ellis and M.S. Torikachvili, Int. J. Mod. Phys. B 6, 5 (1992).CrossRefGoogle Scholar
  44. 39.
    M.A. van Veenendaal, R. Schlatmann, G.A. Sawatzky and W.A. Groen, Phys. Rev. B 47, 446 (1993).ADSCrossRefGoogle Scholar
  45. 40.
    P.W. Anderson, private communication.Google Scholar
  46. 41.
    P.W. Anderson, Phys. Rev. Lett. 63, 1839 (1990).ADSCrossRefGoogle Scholar
  47. 42.
    A.E. Ruckenstein and C.M. Varma, Physica (Amsterdam) 185–189C, 134 (1991).Google Scholar
  48. 43.
    V.J. Emery and S.A. Kivelson, J. Phys. Chem. Solids 53, 1499 (1992).ADSCrossRefGoogle Scholar
  49. 44.
    N.F. Mott, Metal-Insulator Transitions (Taylor and Francis, London, 1974) p. 149.Google Scholar
  50. 45.
    C.M. Varma, P.B. Littlewood, S. Schmitt-Rink, E. Abrahams and A.E. Ruckenstein, Phys. Rev. Lett. 63, 1996 (1989).ADSCrossRefGoogle Scholar
  51. 46.
    C.G. Olson, R. Liu, A.-B. Yang, D.W. Lynch, A.J. Arko and R.S. List, Science 245, 731 (1989).ADSCrossRefGoogle Scholar
  52. 47.
    R. Manzke, T. Buslaps, R. Claessen, M. Skibowski and J. Fink, Physica (Amsterdam) 152–154C, 1381 (1989).Google Scholar
  53. 48.
    L.-Z. Liu, R.O. Anderson and J.W. Allen, J. Phys. Chem. Solids 52, 1473 (1991).ADSCrossRefGoogle Scholar
  54. 49.
    R. Claessen, R.O. Anderson, J.W. Allen, C.G. Olson, C. Janowitz, W.P. Ellis, S. Harm, M. Kalning, R. Manzke and M. Skibowski, Phys. Rev. Lett. 69, 808 (1992).ADSCrossRefGoogle Scholar
  55. 50.
    S.D. Kevan, Phys. Rev. Lett. 50, 526 (1983).ADSCrossRefGoogle Scholar
  56. 51.
    R. Claessen, G.-H. Gweon and J.W. Allen, unpublished.Google Scholar
  57. 52.
    K. Matho, in the Proceedings of the International Conference on Strongly Correlated Electron Systems, San Diego, 1993, to be published in Physica B.Google Scholar
  58. 53.
    S. Harm, R. Düng, R. Manske, M. Skibowski, R. Claessen and J.W. Allen, in the Proceedings of the International Conference on Electron Spectroscopy, Kiev, 1993, to be published in J. Electron Spectroscopy.Google Scholar
  59. 54.
    G.A. Sawatzky, in High Temperature Superconductivity (Proceedings of Los Alamos Symposium), edited by K.S. Bedell, D. Coffey, D.E. Meltzer, D. Pines and J.R. Schrieffer, (Addison Wesley, Menlo Park, 1990) p. 297.Google Scholar
  60. 55.
    B. Dardel, D. Malterre, M. Grioni, P. Weibel, Y. Baer and F. Lévy, Phys. Rev. Lett. 67, 3144 (1991).ADSCrossRefGoogle Scholar
  61. 56.
    B. Dardel, D. Malterre, M. Grioni, P. Weibel, Y. Baer, J. Voit and D. Jerome, preprint.Google Scholar
  62. 57.
    J. Voit, these Proceedings.Google Scholar
  63. 58.
    V. Meden and K. Schönhammer, Phys. Rev. B 46, 15753 (1992).ADSCrossRefGoogle Scholar
  64. 59.
    J. Voit, Phys. Rev. B 47, 6748 (1993); J. Phys. CM 5 (1993), in press.ADSCrossRefGoogle Scholar
  65. 60.
    G.-H. Gweon, R. Claessen, J.W. Allen, W.E. Ellis, L. Schneemeyer, A. Matsuura, Y. Zhang, Z.-X. Shen, and C.G. Olson, unpublished.Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • J. W. Allen
    • 1
  • R. Claessen
    • 1
  • R. O. Anderson
    • 1
  • W. P. Ellis
    • 2
  • C. Janowitz
    • 3
  • C. G. Olson
    • 3
  • J.-H. Park
    • 1
  • L. H. Tjeng
    • 1
    • 4
  • C. T. Chen
    • 4
  • P. Metcalf
    • 5
  • H. R. Harrison
    • 5
  • M. C. de Andrade
    • 6
  • E. A. Early
    • 6
  • S. Harm
    • 7
  • R. F. Jardim
    • 6
  • M. Kalning
    • 7
  • L.-Z. Liu
    • 1
  • R. Manzke
    • 7
  • M. B. Maple
    • 6
  • S.-J. Oh
    • 8
  • M. Skibowski
    • 7
  1. 1.Randall LaboratoryUniversity of MichiganAnn ArborUSA
  2. 2.Los Alamos National LaboratoryLos AlamosUSA
  3. 3.Ames LaboratoryIowa State UniversityAmesUSA
  4. 4.AT&T Bell LaboratoriesMurray HillUSA
  5. 5.Dept. of ChemistryPurdue UniversityWest LafayetteUSA
  6. 6.Department of Physics and Institute for Pure and Applied Physical SciencesUniversity of California at San DiegoLa JollaUSA
  7. 7.Institut für ExperimentalphysikUniversität KielKiel 1Germany
  8. 8.Department of PhysicsSeoul National UniversitySeoulKorea

Personalised recommendations