Advertisement

Metal-Insulator Transition in the 2-D Hubbard Model: A Fermionic Linearization Approach

  • Arianna Montorsi
  • Mario Rasetti
Chapter
  • 380 Downloads
Part of the NATO ASI Series book series (NSSB, volume 343)

Abstract

We show that, by treating within the fermionic linearization scheme the hopping between adjacent 1-d chains, the free enegergy of the 2-d Hubbard model can be evaluated self-consistently as a function of an order parameter describing the intra-bond correlation. The self consistency equation for the latter, when solved explicitly using the exact equations for the 1-d chains, leads to the appearance of a phase transition, for finite values of the Coulomb repulsion strength U, which can be interpreted as a metal-insulator transition. There is some preliminary numerical evidence that the critical temperature is a non-analytic function of U.

Keywords

Critical Temperature Hubbard Model Clifford Algebra Fermionic Creation Bond Order Parameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. Hubbard, Proc. Roy. Soc. A 276, 238 (1963)ADSCrossRefGoogle Scholar
  2. [2]
    E.H. Lieb, and F.Y. Wu, Phys. Rev. Lett. 20, 1445 (1968)ADSCrossRefGoogle Scholar
  3. [3]
    A. Georges, and G. Kotliar, Phys. Rev. B45, 6479 (1992)ADSGoogle Scholar
  4. [4]
    W.F. Brinkman, and T.M. Rice, Phys. Rev. B2, 4302 (1970)ADSGoogle Scholar
  5. [5]
    A. Montorsi, M. Rasetti, and A.I. Solomon, Int. J. Mod. Phys. B3, 247 (1989)MathSciNetADSGoogle Scholar
  6. [6]
    A. Lipowski, and M. Suzuki, J. Phys. Soc. Jpn. 61, 4356 (1992)ADSCrossRefGoogle Scholar
  7. [7]
    A. Montorsi, and A. Pelizzola, J. Phys. A: Math. Gen. 25, 5815 (1992)ADSCrossRefGoogle Scholar
  8. [8]
    A. Montorsi, and M. Rasetti, in preparationGoogle Scholar
  9. [9]
    A. Montorsi, and M. Rasetti, Phys. Rev. Lett. 66, 1383 (1991)MathSciNetADSzbMATHCrossRefGoogle Scholar
  10. [10]
    R. Strack, and D. Vollhardt, Phys. Rev. Lett. 70, 2637 (1993)ADSCrossRefGoogle Scholar
  11. [11]
    A. Montorsi, Fermionic linearization approach to interacting electron systems, Atti Accademia Peloritana dei Pericolanti LXIX, 237 (1991)Google Scholar
  12. [12]
    F.H.L. Essler, V.E. Korepin, and K. Shoutens, Phys. Rev. Lett. 68, 2960 (1992)MathSciNetADSzbMATHCrossRefGoogle Scholar
  13. [13]
    A. Danani, and M. Rasetti, Mod. Phys. Lett. B 6, 1583 (1992)MathSciNetADSGoogle Scholar
  14. [14]
    M. Takahashi, Prog. Theor. Phys. 47, 69 (1972)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Arianna Montorsi
    • 1
  • Mario Rasetti
    • 2
  1. 1.Teory DivisionLos Alamos National LaboratoriesLos AlamosUSA
  2. 2.Dipartimento di Fisica and Unitá INFM del PolitecnicoTorinoItaly

Personalised recommendations