Advertisement

Search for Deviations from Fermi Liquid Behavior in 2D Repulsive and Attractive Hubbard Models

  • Mohit Randeria
  • Jan R. Engelbrecht
  • Nandini Trivedi
Chapter
  • 384 Downloads
Part of the NATO ASI Series book series (NSSB, volume 343)

Abstract

We review two very different approaches to the problem of the breakdown of Fermi liquid theory (FLT) in 2D Fermi systems. (I) First we discuss the repulsive Hubbard model. A low density expansion is shown to yield unexpected non-perturbative bound state formation, and yet FLT is robust in this regime. We also briefly review other calculations which address similar issues. (II) Next we turn to the attractive Hubbard model above its superconducting T c . With increasing attraction the normal state is shown to deviate from a Fermi liquid with pseudo-gaps in the charge and spin excitation spectrum.

Keywords

Hubbard Model Fermi Liquid Luttinger Liquid Fermi Liquid Theory Fermi Liquid Behavior 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    P.W. Anderson, Phys. Rev. Lett. 64, 1839 (1990); Phys. Rev. Lett. 65, 2306 (1990).ADSCrossRefGoogle Scholar
  2. [2]
    J.R. Engelbrecht and M. Randeria, Phys. Rev. Lett. 65, 1032 (1990); Phys. Rev. Lett. 66, 3225 (1991).ADSCrossRefGoogle Scholar
  3. [3]
    J.R. Engelbrecht and M. Randeria, Phys. Rev. B 45, 12419 (1992).ADSCrossRefGoogle Scholar
  4. [4]
    J.R. Engelbrecht, M. Randeria, and L. Zhang, Phys. Rev. B 45, 10135 (1992).ADSCrossRefGoogle Scholar
  5. [5]
    V. M. Galitskii, Sov. Phys. JETP 7, 104 (1958).MathSciNetGoogle Scholar
  6. [6]
    H. Fukuyama, Y. Hasegawa and O. Narikiyo, J. Phys. Soc. Jpn. 60, 2013 (1991).ADSCrossRefGoogle Scholar
  7. [7]
    P. Bloom, Phys. Rev. B 12, 125 (1975).ADSCrossRefGoogle Scholar
  8. [8]
    B. S. DeWitt, Phys. Rev. 103, 1565 (1956).MathSciNetADSzbMATHCrossRefGoogle Scholar
  9. [9]
    M. Fabrizio, A. Parola and E. Tosatti, Phys. Rev. B 44, 1033 (1991).ADSCrossRefGoogle Scholar
  10. [10]
    H. Chen and D. C. Mattis, Mod. Phys. Lett. B 7, 723 (1993).ADSCrossRefGoogle Scholar
  11. [11]
    J. Serene and D. Hess, Phys. Rev. B 44, 3391 (1991).ADSCrossRefGoogle Scholar
  12. [12]
    F. D. M. Haldane, J. Phys. C. 14, 2585 (1981).ADSCrossRefGoogle Scholar
  13. [13]
    D. Frenkel, Phys. Rev. B 46, 15008 (1992).MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    R. Shankar, Rev. Mod. Phys. (1994); to appear.Google Scholar
  15. [15]
    W. Metzner and C. Di Castro, Phys. Rev. B 47, 16107 (1993).ADSCrossRefGoogle Scholar
  16. [16]
    C. Castellani, C. Di Castro and W. Metzner, Phys. Rev. Lett. 72, 316, (1994)ADSCrossRefGoogle Scholar
  17. [17]
    F. D. M. Haldane, Lectures at the Enrico Fermi School, Varenna (1992).Google Scholar
  18. [18]
    P.C.E. Stamp, J. de Physique 3, 625 (1993).ADSGoogle Scholar
  19. [19]
    P. A. Lee and N. Nagaosa, Phys. Rev. B 46, 5621 (1992).ADSCrossRefGoogle Scholar
  20. [20]
    T. Holstein, R. E. Norton and P. Pincus, Phys. Rev. B 8, 2649 (1973).ADSCrossRefGoogle Scholar
  21. [21]
    G. Baym et al, Phys. Rev. Lett. 64, 1867 (1990).ADSCrossRefGoogle Scholar
  22. [22]
    B. I. Halperin, P. A. Lee, and N. Read, Phys. Rev. B 47, 7312 (1993).ADSCrossRefGoogle Scholar
  23. [23]
    M. Randeria in Bose Einstein Condensation, edited by A. Griffin, D. Snoke and S. Stringari, (Cambridge University Press, 1994).Google Scholar
  24. [24]
    M. Randeria, N. Trivedi, A. Moreo, and R. T. Scalettar, Phys. Rev. Lett. 69, 2001 (1992), and preprint.ADSCrossRefGoogle Scholar
  25. [25]
    C. A. R. Sa de Melo, M. Randeria, and J. R. Engelbrecht, Phys. Rev. Lett. 71, 3202 (1993), and preprint.ADSCrossRefGoogle Scholar
  26. [26]
    R. T. Scalettar et al, Phys. Rev. Lett. 62, 1407 (1989)ADSCrossRefGoogle Scholar
  27. A. Moreo and D. J. Scalapino, Phys. Rev. Lett. 66, 946 (1991).ADSCrossRefGoogle Scholar
  28. [27]
    R. Liu et al, Phys. Rev. B46, 11056 (1992).ADSGoogle Scholar
  29. [28]
    W. W. Warren et al, Phys. Rev. Lett. 62, 1193 (1989)ADSCrossRefGoogle Scholar
  30. M. Takigawa et al, Phys. Rev. B43, 247 (1991).ADSGoogle Scholar
  31. [29]
    J. Rossat-Mignod et al, Physica B186-188, 1 (1993)ADSGoogle Scholar
  32. J. Tranquada et al, Phys. Rev. B46, 5561 (1992).ADSGoogle Scholar
  33. [30]
    J. Orenstein et al, Phys. Rev. B42, 6342 (1990)ADSGoogle Scholar
  34. Z. Schlesinger et al, Phys. Rev. Lett. 67, 2741 (1991)ADSCrossRefGoogle Scholar
  35. C. C. Homes et al., Phys. Rev. Lett. 71, 1645 (1993).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Mohit Randeria
    • 1
  • Jan R. Engelbrecht
    • 2
  • Nandini Trivedi
    • 1
  1. 1.Argonne National LaboratoryMSD 223ArgonneUSA
  2. 2.Los Alamos National LaboratoryCMS MS-K765Los AlamosUSA

Personalised recommendations