Luttinger-Liquid Behaviour in 2D: The Variational Approach

  • Roser Valentí
  • Claudius Gros
Part of the NATO ASI Series book series (NSSB, volume 343)


We consider the variational approach to Luttinger liquids in one- and two dimensions. In one dimension the 1/r 2 model solved by Sutherland is considered and shown to include Luttinger-Liquid type correlations. For the two dimensional t — J a wavefunction is introduced which is shown to have an algebraic singularity at the Fermi edge in the momentum distribution function. The possible coexistence of Luttinger Liquid correlations with d-wave superconductivity is discussed.


Fermi Surface Fermi Liquid Luttinger Liquid Variational Monte Carlo Fermi Edge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    F.D.M. Haldane, J. Phys. C 14, 2585 (1981).ADSCrossRefGoogle Scholar
  2. [2]
    S. Tomonaga, Prog. Theor. Phys. 5, 544 (1950). J.M. Luttinger, J. Math. Phys. 4, 1154 (1963).MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    C.S. Hellberg and E.J. Mele, Phys. Rev. Lett. 67, 2080 (1991).ADSCrossRefGoogle Scholar
  4. [4]
    M. Ogata, M.U. Luchini, S. Sorella, F.F. Assaad, Phys. Rev. Lett. 66, 2388 (1991).ADSCrossRefGoogle Scholar
  5. [5]
    Y.C. Chen and T. K. Lee, Phys. Rev. B 47, 11548 (1993).ADSCrossRefGoogle Scholar
  6. [6]
    C.S. Hellberg and E.J. Mele, Phys. Rev. B 48, 646 (1993).ADSCrossRefGoogle Scholar
  7. [7]
    B. Sutherland, Phys. Rev. A 4, 2019 (1971).ADSCrossRefGoogle Scholar
  8. [8]
    E. Feenberg, Theory of Quantum Fluids (Academic, New York, 1969).Google Scholar
  9. [9]
    B. Sutherland, Phys. Rev. B 45, 907 (1992).ADSCrossRefGoogle Scholar
  10. [10]
    R. Valenti and C. Gros, Phys. Rev. Lett. 68, 2402 (1992).ADSCrossRefGoogle Scholar
  11. C. Gros and R. Valentí, Mod. Phys. Lett. B, 7, 119 (1993).ADSCrossRefGoogle Scholar
  12. [11]
    Y.C. Chen and T.K. Lee, Tomonaga-Luttinger Liquid in The Two-Dimensional t-J Model, preprint.Google Scholar
  13. [12]
    D.M. Ceperley and M.H. Kalos, Monte Carlo Methods in Statistical Physics, edited by K. Binder (Springer-Verlag, Berlin, 1979).Google Scholar
  14. M. Boninsegni and E. Manousakis, Phys. Rev. B 47, 11897 (1993).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Roser Valentí
    • 1
  • Claudius Gros
    • 1
  1. 1.Institut für PhysikUniversität DortmundDortmundGermany

Personalised recommendations