Skip to main content

Charge-Spin Separation and the Spectral Properties of Luttinger Liquids

  • Chapter
The Hubbard Model

Part of the book series: NATO ASI Series ((NSSB,volume 343))

Abstract

We compute the spectral function p(q, ω) of the one-dimensional Luttinger model. We discuss the distinct influences of charge-spin separation and of the anomalous dimensions of the fermion operators and their evolution with correlation strength. Charge-spin separation shows up in finite spectral weight at frequencies between υσ q and υp q where υ p and υσ are the velocities of charge and spin fluctuations, while spectral weight above υp q and below -υp q is generated by the hybridization of the Fermi surface at ±k F by interactions. There are nonuniversal power-law singularities at these spectral frequencies. We discuss the consistency of recent photoemission experiments on low-dimensional conductors with a Luttinger liquid picture which then would suggest very strong long range interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Sólyom, Adv. Phys. 28, 201 (1979).

    Article  ADS  Google Scholar 

  2. D. C. Mattis and E. H. Lieb, J. Math. Phys. 6, 304 (1963)

    Article  MathSciNet  ADS  Google Scholar 

  3. I. E. Dzyaloshinskiĭ and A. I. Larkin, Sov. Phys. JETP 38, 202 (1974).

    ADS  Google Scholar 

  4. F. D. M. Haldane, Phys. Rev. Lett. 45, 1358 (1980).

    Article  MathSciNet  ADS  Google Scholar 

  5. F. D. M. Haldane, J. Phys. C 14, 2585 (1981).

    Article  ADS  Google Scholar 

  6. e. g. M. Ogata and H. Shiba, Phys. Rev. B. 41, 2326 (1990)

    Article  ADS  Google Scholar 

  7. H. J. Schulz, Phys. Rev. Lett. 64, 2831 (1990)

    Article  ADS  Google Scholar 

  8. H. Frahm and V. E. Korepin, Phys. Rev. B 42, 10553 (1990)

    Article  ADS  Google Scholar 

  9. C. S. Hellberg and E. J. Mele, Phys. Rev. Lett. 67, 2080 (1991)

    Article  ADS  Google Scholar 

  10. M. Ogata, M. Luchini, S. Sorella, and F. F. Assaad, Phys. Rev. Lett. 66, 2388 (1991)

    Article  ADS  Google Scholar 

  11. J. Voit, Phys. Rev. B 45, 4027 (1992).

    Article  ADS  Google Scholar 

  12. P. W. Anderson and Y. R. Ren, Proceedings of the Los Alamos Conference on High-T c-Superconductivity, Addison Wesley Publ. Comp., 1990, p. 3

    Google Scholar 

  13. P. W. Anderson, Phys. Rev. Lett. 64, 1839 and 65, 2306 (1990).

    Article  ADS  Google Scholar 

  14. C. G. Olson et al., Phys. Rev. B 42, 381 (1990).

    Article  MathSciNet  ADS  Google Scholar 

  15. J. P. Pouget, S. K. Khanna, F. Denoyer, R. Comes, A. F. Garito, and A. J. Heeger, Phys. Rev. Lett. 37, 437 (1976)

    Article  ADS  Google Scholar 

  16. H. Basista, D. A. Bonn, T. Timusk, J. Voit, D. Jérome, and K. Bechgaard, Phys. Rev. B 42, 4088 (1990)

    Article  ADS  Google Scholar 

  17. C. Bourbonnais, F. Creuzet, D. Jérome, K. Bechgaard, and A. Moradpour, J. Phys (Paris) Lett. 45, L755 (1984)

    Article  Google Scholar 

  18. P. Wzietek, F. Creuzet, C. Bourbonnais, D. Jérôme, and A. Moradpour, J. Phys. (Paris) I 3, 171 (1993).

    ADS  Google Scholar 

  19. B. Dardel, D. Malterie, M. Grioni, P. Weibel, Y. Baer, and F. Lévy, Phys. Rev. Lett. 67, 3144 (1991).

    Article  ADS  Google Scholar 

  20. B. Dardel, D. Malterre, M. Grioni, P. Weibel, Y. Baer, J. Voit, and D. Jérôme, submitted to Phys. Rev. Lett.

    Google Scholar 

  21. J. Voit, Phys. Rev. B 47, 6740 (1993) and J. Phys. CM 5, 8305 (1993).

    Article  ADS  Google Scholar 

  22. V. Meden and K. Schönhammer, Phys. Rev. B 46, 15753 (1992), and preprint.

    Article  ADS  Google Scholar 

  23. A. Luther and I. Peschel, Phys. Rev. B 9, 2911 (1974).

    Article  ADS  Google Scholar 

  24. J. M. Luttinger, Phys. Rev. 119, 1153 (1960).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. R. Bozio, M. Meneghetti, D. Pedron, and C. Pecile, Synth. Met. 27, B129 (1988).

    Article  Google Scholar 

  26. J. Voit and H.J. Schulz, Phys. Rev. B 37, 10068 (1988).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Voit, J. (1995). Charge-Spin Separation and the Spectral Properties of Luttinger Liquids. In: Baeriswyl, D., Campbell, D.K., Carmelo, J.M.P., Guinea, F., Louis, E. (eds) The Hubbard Model. NATO ASI Series, vol 343. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1042-4_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1042-4_27

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1044-8

  • Online ISBN: 978-1-4899-1042-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics