Advertisement

Conservation Laws in Normal Metals: Luttinger Liquid vs. Fermi Liquid

  • Carlo Di Castro
  • Claudio Castellani
  • Walter Metzner
Chapter
  • 389 Downloads
Part of the NATO ASI Series book series (NSSB, volume 343)

Abstract

The structure of Fermi and Luttinger liquids is compared, emphasizing the crucial role of asymptotic conservation laws. The crossover between both liquids as a function of continuous dimensionality is analyzed. Exploiting the conservation laws, we sum up perturbation theory to all orders. Above one dimension, the Fermi liquid phase turns out to be stable with respect to regular residual interactions.

Keywords

Fermi Surface Ward Identity Random Phase Approximation Fermi Liquid Luttinger Liquid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    P. W. Anderson, Science 235, 1196 (1987); Phys. Rev. Lett. 64, 1839 (1990); Phys. Rev. Lett. 65, 2306 (1990).ADSCrossRefGoogle Scholar
  2. [2]
    C. M. Varma, P. B. Littlewood, S. Schmitt-Rink, E. Abrahams and A. E. Ruckenstein, Phys. Rev. Lett. 63, 1996 (1989).ADSCrossRefGoogle Scholar
  3. [3]
    Careful second order and T-matrix calculations have been carried out by J.R. Engelbrecht and M. Randeria, Phys. Rev. Lett. 65, 1032 (1990); Phys. Rev. B 45, 12419 (1992)ADSCrossRefGoogle Scholar
  4. H. Fukuyama, Y. Hasegawa and O. Narikiyo, J. Phys. Soc. Jpn. 60, 2013 (1991).ADSCrossRefGoogle Scholar
  5. [4]
    For a review on 1D and quasi-1D electronic systems, see J. Solyom, Adv. Phys. 28, 201 (1979).ADSCrossRefGoogle Scholar
  6. [5]
    For a short, recent review on one-dimensional Fermi systems, see H. J. Schulz in Proceedings of the Adriatico Research Conference and Miniworkshop on “Strongly correlated electron systems II”, eds. G. Baskaran et al (World Scientific, Singapur 1991).Google Scholar
  7. [6]
    F.D.M. Haldane, J. Phys. C 14, 2585 (1981).ADSCrossRefGoogle Scholar
  8. [7]
    A detailed discussion of the role of conservation laws in Luttinger liquids and a comparison with Fermi liquids is given by W. Metzner and C. Di Castro, Phys. Rev. B 47, 16107 (1993).ADSCrossRefGoogle Scholar
  9. [8]
    C. Castellani, C. Di Castro and W. Metzner, Phys. Rev. Lett. 72 316 (1994).ADSCrossRefGoogle Scholar
  10. [9]
    A particularly thorough discussion of Fermi liquid theory is given by P. Nozieres, Theory of Interacting Fermi Systems (Benjamin, Amsterdam 1964).zbMATHGoogle Scholar
  11. [10]
    G. Benfatto and G. Gallavotti, Phys. Rev. B42, 9967 (1990); J. Stat. Phys. 59, 541 (1990)ADSGoogle Scholar
  12. J. Feldman and E. Trubowitz, Helv. Phys. Act. 63, 156 (1990); ibid. 64, 213 (1991).MathSciNetzbMATHGoogle Scholar
  13. [11]
    For a pedagogical description of the Wilson group for Fermi systems, see R. Shankar, Physica A 177, 530 (1991); preprint (1993), to be published in Rev. Mod. Phys.MathSciNetADSCrossRefGoogle Scholar
  14. [12]
    W. Kohn and J.M. Luttinger, Phys. Rev. Lett. 15, 524 (1965).MathSciNetADSCrossRefGoogle Scholar
  15. [13]
    S. Tomonaga, Prog. Theor. Phys. 5, 544 (1950)MathSciNetADSCrossRefGoogle Scholar
  16. J.M. Luttinger, J. Math. Phys. 4, 1154 (1963)MathSciNetADSCrossRefGoogle Scholar
  17. D.C. Mattis and E.H. Lieb, J. Math. Phys. 6, 304 (1965).MathSciNetADSCrossRefGoogle Scholar
  18. [14]
    C. Di Castro and W. Metzner, Phys. Rev. Lett. 67, 3852 (1991).ADSCrossRefGoogle Scholar
  19. [15]
    I.E. Dzyaloshinskii and A.I. Larkin, Sov. Phys. JETP 38, 202 (1974).ADSGoogle Scholar
  20. [16]
    H.U. Everts and H. Schulz, Sol. State Comm. 15, 1413 (1974).ADSCrossRefGoogle Scholar
  21. [17]
    A. Luther and I. Peschel, Phys. Rev. B 9, 2911 (1974).ADSCrossRefGoogle Scholar
  22. [18]
    V. Meden and K. Schönhammer, Phys. Rev. B 46, 15753 (1992).ADSCrossRefGoogle Scholar
  23. [19]
    J. Voit, Phys. Rev. B 47, 6740 (1993).ADSCrossRefGoogle Scholar
  24. [20]
    E.H. Lieb and F.Y. Wu, Phys. Rev. Lett. 20, 1445 (1968).ADSCrossRefGoogle Scholar
  25. [21]
    F.D.M. Haldane and Y. Tu (unpublished).Google Scholar
  26. [22]
    H.J. Schulz, Phys. Rev. Lett. 64, 2831 (1990).ADSCrossRefGoogle Scholar
  27. [23]
    N. Kawakami and S.K. Yang, Phys. Lett. A 148, 359 (1990).ADSCrossRefGoogle Scholar
  28. [24]
    H. Frahm and V.E. Korepin, Phys. Rev. B 42, 10553 (1990).ADSCrossRefGoogle Scholar
  29. [25]
    M. Ogata and H. Shiba, Phys. Rev. B 41, 2326 (1990).ADSCrossRefGoogle Scholar
  30. [26]
    A. Parola and S. Sorella, Phys. Rev. Lett. 64, 1831 (1990)MathSciNetADSzbMATHCrossRefGoogle Scholar
  31. S. Sorella, A. Parola, M. Parrinello and E. Tosatti, Europhys. Lett. 12(8), 721 (1990).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Carlo Di Castro
    • 1
    • 2
  • Claudio Castellani
    • 1
    • 2
  • Walter Metzner
    • 1
    • 2
  1. 1.Departimento di FisicaUniversita “La Sapienza”RomaItaly
  2. 2.Department of PhysicsPrinceton UniversityPrincetonUSA

Personalised recommendations