Advertisement

Failure or Fermi Liquid Theory in 2 Dimensions: How to Infer it from Perturbation Theory

  • G. Baskaran
Chapter
  • 388 Downloads
Part of the NATO ASI Series book series (NSSB, volume 343)

Abstract

We look at the perturbative correction to the ground state energy eigenvalue of a weakly interacting dilute fermi gas in 2-dimensions. From the structure of the energy shift we are able to infer the presence of an effective two body long range interaction \( \frac{1}{{{r^2}}} \) among the constituent electrons in the ground state. This renormalised long range interaction inferred from perturbation theory is used to argue that the final effect is a failure of fermi liquid theory. We also state a new and simple theorem and give a heuristic proof. This leads to a Bethe ansatz type structure for our problem in two dimensions in a natural way.

Keywords

Vector Potential Hubbard Model Energy Shift Fermi Liquid Theory Landau Parameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    G. Baskaran and T. Hsu, Unpublished, 1987.Google Scholar
  2. [2]
    P. W. Anderson, Chapter 6 of Princeton RVB book(to be published).Google Scholar
  3. [3]
    P. W. Anderson, Phys. Rev. Letters 67, (1991) 2092; Phys. Rev. Letters 67 (1991) 384.ADSCrossRefGoogle Scholar
  4. [4]
    P. W. Anderson and Y. Ren, High Temperature Superconductors, Editors K. S. Bedell et al, Proc. of the International Conference on “Physics of the Highly Correlated Electron Systems”, Los Alamos 1989 (Addison-Wesley, NY 1989) pp 1-33.Google Scholar
  5. [5]
    P. W. Anderson, Physica Scripta, T42, (1992) 11–16. Progress of Theoretical Physics, Supplement 107 (1992)41.ADSCrossRefGoogle Scholar
  6. [6]
    P. W. Anderson, Phys. Rev. Letters, 71 (1993) 1220.ADSCrossRefGoogle Scholar
  7. [7]
    P. W. Anderson, Phys. Rev. Letters, 64, (1990) 2306; and 66, (1991) 3226.ADSCrossRefGoogle Scholar
  8. [8]
    J. Engelbrecht and M. Randeria, Phys. Rev. Letters, 65, (1990) 1032; and 66, (1991) 325.ADSCrossRefGoogle Scholar
  9. [9]
    M. Randeria, J. Duan and L. Shieh, Phys. Rev. B41, (1990) 327.ADSGoogle Scholar
  10. [10]
    H. Fukuyama, O. Narikiyo, Y. Hasegawa, J. Phys. Soc. Jpn, 60, (1991) 372; S. Yarlagadda and S. Kurihara, Phys. Rev. B, Oct 1993.ADSCrossRefGoogle Scholar
  11. [11]
    P. C. E. Stamp, J. de Physique, March 1993.Google Scholar
  12. [12]
    G. Beydaghyan, N. Y. Prokofev, P. C. E. Stamp, To be published; and G. Beydaghyan, M. Sc. Thesis ( in preparation).Google Scholar
  13. [13]
    N. V. Prokofev, P. C. E. Stamp, Unpublished manuscript ( U. B. C., Oct. 1991).Google Scholar
  14. [14]
    M. Fabrizio, A. Parola, E. Tossati, Phys. Rev. B44, (1991) 1033.ADSGoogle Scholar
  15. [15]
    C. Hodges, H. Smith, J. W. Wilkins, Phys. Rev. B4, (1971) 302ADSGoogle Scholar
  16. P. Bloom, Phys. Rev. B12, (1975) 125ADSGoogle Scholar
  17. M. B. Vetrovec, G. M. Caneiro, Phys. Rev. B22, (1980) 1250.ADSGoogle Scholar
  18. [16]
    Hua Chen and Daniel Mattis, Utah preprint (1993).Google Scholar
  19. [17]
    S. Yu. Khlebnikov, UCLA preprint 91/TEP/50 and 92/TEP/10; Valenti and C. Gross, Phys. Rev. Lett. 1993.Google Scholar
  20. [18]
    A. A. Abrikosov, I. Khalatnikov, JETP 6, (1958) 888.MathSciNetADSGoogle Scholar
  21. [19]
    A.A. Abrikosov, L.P. Gorkov and I.E. Dzyaloshinski, Methods of quantum field theory in statistical physics (Prentice Hall 1963).Google Scholar
  22. [20]
    B. Sutherland, Phys. Rev. A4, 2019(71); A5, 1327(71); B. Sutherland in Lecture notes in Physics Vol 242, Editors B. S. Sastry, S. S. Jha and V. Singh, Springer Verlag 1985.Google Scholar
  23. [21]
    G. Baskaran, to be published.Google Scholar
  24. [22]
    R. B. Laughlin, Science 242 (1988) 525.ADSCrossRefGoogle Scholar
  25. [23]
    F. Wilczek and A. Zee, Phys. Rev. Lett. 52 (1984)2111.MathSciNetADSCrossRefGoogle Scholar
  26. [24]
    G. Baskaran and P.W. Anderson, Phys. Rev. B 37 (1988)580ADSCrossRefGoogle Scholar
  27. G. Baskaran, Physica Scripta, T27 (1989) 53ADSCrossRefGoogle Scholar
  28. L. B. Ioffe and A. I. Larkin, Phys. Rev. B39 (1989) 8988ADSGoogle Scholar
  29. P.A. Lee and N. Nagaosa, Phys. Rev. B 46 (1992) 5621.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • G. Baskaran
    • 1
  1. 1.The Institute of Mathematical SciencesMadrasIndia

Personalised recommendations