Advertisement

Two Particle Scattering and Orthogonality Catastrophy in the Hubbard Model

  • Walter Metzner
Chapter
  • 384 Downloads
Part of the NATO ASI Series book series (NSSB, volume 343)

Abstract

The wavefunction of two fermions subject to a repulsive Hubbard interaction in the presence of a Fermi sea is evaluated in detail. As first shown by Anderson, in some cases the wavefunction may be affected by scattering even if both particles are situated on the Fermi surface. A direct signal for an orthogonality catastrophy produced by interactions of an extra particle with the rest of the system is however found only in one dimension. Nevertheless, the structure of the interacting two-particle wavefunction suggests the possibitiy of new non-perturbative phenomena in the 2D Hubbard model.

Keywords

Fermi Surface Hubbard Model Fermi Point Double Occupancy Local Scatterer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    P.W. Anderson, Phys. Rev. Lett. 64, 1839 (1990); Phys. Rev. Lett. 65, 2306 (1990); High-T c superconductivity (to be published), chapter 6.ADSCrossRefGoogle Scholar
  2. [2]
    Careful second order and T-matrix calculations have been carried out by J.R. Engelbrecht and M. Randeria, Phys. Rev. Lett. 65, 1032 (1990); Phys. Rev. B 45, 12419 (1992)ADSCrossRefGoogle Scholar
  3. H. Fukuyama, Y. Hasegawa and O. Narikiyo, J. Phys. Soc. Jpn. 60, 2013 (1991).ADSCrossRefGoogle Scholar
  4. [3]
    P.C.E. Stamp, J. Phys. I (France) 3, 625 (1993).CrossRefGoogle Scholar
  5. [4]
    For an analysis of wave functions for two and more particles on an otherwise empty lattice, see M. Fabrizio, A. Parola and E. Tosatti, Phys. Rev. B 44, 1033 (1991).ADSCrossRefGoogle Scholar
  6. [5]
    W. Metzner and C. Castellani, to be published.Google Scholar
  7. [6]
    J.R. Engelbrecht and M. Randeria, Phys. Rev. Lett. 65, 1032 (1990); Phys. Rev. B 45, 12419 (1992).ADSCrossRefGoogle Scholar
  8. [7]
    K. Gottfried, Quantum Mechanics (Benjamin, New York, 1966), Vol. I, Sec. 49.Google Scholar
  9. [8]
    P.W. Anderson, Phys. Rev. Lett. 64, 3226 (1991).ADSCrossRefGoogle Scholar
  10. [9]
    P.W. Anderson, Phys. Rev. Lett. 18, 1049 (1967).ADSCrossRefGoogle Scholar
  11. [10]
    C. Di Castro and W. Metzner, Phys. Rev. Lett. 67, 3852 (1991); Phys. Rev. B 47, 16107 (1993).ADSCrossRefGoogle Scholar
  12. [11]
    C. Castellani, C. Di Castro and W. Metzner, Phys. Rev. Lett. 72, 316 (1994).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Walter Metzner
    • 1
  1. 1.Department of PhysicsPrinceton UniversityPrincetonUSA

Personalised recommendations