“Infrared Catastrophe:” When Does It Trash Fermi Liquid Theory?

  • P. W. Anderson
Part of the NATO ASI Series book series (NSSB, volume 343)


We give an historical discussion of the “infrared catastrophe” and the “x-ray edge anomalies” of Mahan associated with scatterers in a Fermi sea of electrons. The infrared catastrophe provides a perspicuous way into understanding the difficulties with many-body perturbation theory which have recently been discovered as a result of a study of high T c superconductivity, and we show how this “catastrophe” is avoided in some cases, but cannot be avoided in the one and 2-dimensional electron gas systems. Finally, we indicate the new type of theory which is necessary in the event of such a breakdown.


Fermi Surface Slater Determinant Ladder Diagram Scatter Phase Shift Fermi Liquid Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G.D. Mahan, Phys. Rev. 163, 612 (1967); Phys. Rev. 153, 882 (1967)ADSCrossRefGoogle Scholar
  2. 2.
    P.W. Anderson, Phys. Rev. Lett. 18, 1049 (1967)ADSCrossRefGoogle Scholar
  3. 3.
    C.J. DeDominicis and P. Nozieres, Phys. Rev. 178, 1097 (1969)ADSCrossRefGoogle Scholar
  4. 4.
    W. Kohn and C. Majumdar, Phys. Rev. A 138, 1617 (1965)MathSciNetADSGoogle Scholar
  5. 5.
    P. Nozieres, O. Raulet, J. Gavoret, Phys. Rev. 178, 1072, 1084 (1969)ADSCrossRefGoogle Scholar
  6. 6.
    U. Schotte and D. Schotte, Phys. Rev. 182, 429 (1969)MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    F.D.M. Haldane, Unpublished Notes, Les Houches Summer School, 1992.Google Scholar
  8. 8.
    J. Solyom, Adv. in Physics, 28, 201 (1979)ADSCrossRefGoogle Scholar
  9. 9.
    F.D.M. Haldane, J. Phys C 14, 2585 (1981)ADSCrossRefGoogle Scholar
  10. 10.
    W. Metzner and C. di Castro, preprintGoogle Scholar
  11. 11.
    D.R. Hamann, Private CommunicationGoogle Scholar
  12. 12.
    K. Brueckner, et al, Phys. Rev., 92, 1023 (1953); Phys. Rev. 95, 217 (1954), etc.ADSzbMATHCrossRefGoogle Scholar
  13. 13.
    T.D. Lee, K. Huang, C.N. Yang, Phys. Rev. 106, 1135 (1958)MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    L.P. Gorkov and G. Galitskii, as quoted in Ref. 17Google Scholar
  15. 15.
    P. Bloom, Phys. Rev., B12, 125 (1975)ADSGoogle Scholar
  16. 16.
    A.A. Abrikosov, L.P. Gorkov, I. Dzialoshinskii, Methods of Quantum Field Theory, Prentice Hall, N.J. (1963)zbMATHGoogle Scholar
  17. 17.
    P.W. Anderson, submitted to Phys. Rev. Lett.Google Scholar
  18. 18.
    H. Fukuyama and O. Narikiyo, J. P. Soc. Japan 60, 372 (1991); 60, 1032 (1991)ADSCrossRefGoogle Scholar
  19. 19.
    J.R. Engelbrecht and M. Randeria, Phys. Rev. Lett 65, 1032 (1990)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • P. W. Anderson
    • 1
  1. 1.Dept. of Physics Joseph Henry Laboratories of Physics Jadwin HallPrinceton UniversityPrincetonUSA

Personalised recommendations