The Extended Hubbard Model at Large Interaction

  • P. G. J. van Dongen
Part of the NATO ASI Series book series (NSSB, volume 343)


The half-filled Extended Hubbard model (i. e., the Hubbard model including nearest-neighbor interaction) is considered at strong coupling in fourth order perturbation theory (4thOPTh). The ground state energies in the spin- and charge-density-wave phases and the resulting phase diagram are calculated in one, two, three and higher dimensions. Quite generally one finds that second order perturbation theory alone is valid only at unrealistically large values of the interaction parameters U and V. In one dimension it is shown that, for U/t larger 6, 4thOPTh leads to excellent agreement with existing Monte Carlo data.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    E. Müller-Hartmann Z. Phys. B 74 507 (1989).ADSCrossRefGoogle Scholar
  2. [2]
    W. Metzner and D. Vollhardt Phys. Rev. Lett. 62 324 (1989).ADSCrossRefGoogle Scholar
  3. [3]
    In d = 1 the transition is known to be second order at weak and first order at strong interaction. In higher dimensions (d → ∞) the transition is first order for all U and V.Google Scholar
  4. [4]
    R.A. Bari Phys. Rev. B 3 2662 (1971).ADSCrossRefGoogle Scholar
  5. [5]
    P.G.J. van Dongen Phys. Rev. Lett. 67 757 (1991).ADSCrossRefGoogle Scholar
  6. [6]
    J.E. Hirsch Phys. Rev. Lett. 53 2327 (1984).ADSCrossRefGoogle Scholar
  7. [7]
    A.B. Harris and R.V. Lange Phys. Rev. 157 295 (1967).ADSCrossRefGoogle Scholar
  8. [8]
    M. Takahashi J. Phys. C: Solid State Phys. 10 1289 (1977).ADSCrossRefGoogle Scholar
  9. [9]
    J. Solyom Adv. Phys. 21 201 (1979)ADSCrossRefGoogle Scholar
  10. V.J. Emery, in Highly Conducting One-Dimensional Solids, J. Devreese, R. Evrand and V. van Doren, eds. (Plenum, New York, 1979).Google Scholar
  11. [10]
    D.K. Campbell, J. Tinka Gammel and E.Y. Loh Jr. Phys. Rev. B 42 475 (1990).ADSCrossRefGoogle Scholar
  12. [11]
    P.G.J. van Dongen Phys. Rev. B, accepted for publication.Google Scholar
  13. [12]
    L.N. Bulaevskii JETP 24 154 (1966) [Zh. Exp. Teor. Fiz. 51 230 (1967)].ADSGoogle Scholar
  14. [13]
    D.J. Klein and W.A. Seitz Phys. Rev. B 8 2236 (1973).ADSCrossRefGoogle Scholar
  15. [14]
    V.J. Emery Phys. Rev. B 14 2989 (1976).ADSCrossRefGoogle Scholar
  16. [15]
    H. Bethe Z. Phys. 71 205 (1931).ADSCrossRefGoogle Scholar
  17. [16]
    I am grateful to Dr. Hirsch for making these data (not explicitly contained in Ref. [18]) available to me. The actual error bars on the MC data were probably much smaller than the ones quoted.Google Scholar
  18. [17]
    W. Metzner, PhD-thesis, RWTH Aachen (1990).Google Scholar
  19. [18]
    E. Manousakis Rev. Mod. Phys. 63 1 (1991).ADSCrossRefGoogle Scholar
  20. [19]
    H. Nishimori and S.J. Miyake Progr. Theor. Phys. 73 18 (1985).ADSCrossRefGoogle Scholar
  21. [20]
    Y. Zhang and J. Callaway Phys. Rev. B 39 9397 (1989).ADSCrossRefGoogle Scholar
  22. [21]
    M.E. Fisher and D.S. Gaunt Phys. Rev. 133A 224 (1964).ADSCrossRefGoogle Scholar
  23. [22]
    M. Jarrell Phys. Rev. Lett. 69 168 (1992).ADSCrossRefGoogle Scholar
  24. [23]
    A. Georges and W. Krauth Phys. Rev. 48 7167 (1993).ADSCrossRefGoogle Scholar
  25. [24]
    M. Takahashi Progr. Theor. Phys. 45 756 (1971).ADSzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • P. G. J. van Dongen
    • 1
  1. 1.Institut für Theoretische Physik CRWTH AachenAachenGermany

Personalised recommendations