Advertisement

The Hubbard Model with Local Disorder in d = ∞

  • V. Janiš
  • M. Ulmke
  • D. Vollhardt
Chapter
  • 381 Downloads
Part of the NATO ASI Series book series (NSSB, volume 343)

Abstract

The scattering of electrons caused by their mutual interaction and by the presence of static disorder, respectively, can lead to very different, and even opposite, effects. For example, on a cubic lattice at half-filling an arbitrarily weak repulsive Hubbard interaction between electrons is sufficient to induce antiferromagnetic long-range order (AFLRO). By contrast, the presence of randomness opposes long-range spatial order. The simultaneous presence of disorder and interactions in electronic systems can hence be expected to lead to fundamentally new phenomena which have no analog in interacting, non-random and non-interacting, disordered systems, respectively [1], To obtain a global picture of the properties of such systems it is desirable to know the solution of a simple, microscopic model which is valid for all input parameters (interaction, disorder, temperature, band filling). Since exact solutions are not available in d = 2, 3 one would like to construct, at least, a thermodynamically consistent mean-field theory that is valid also at strong coupling. Such a (non-perturbative) approximation is provided by the exact solution of a model in d = ∞. It is now known that even in the limit d → ∞ [2,3] the Hubbard interaction remains dynamical [4] and leads to a highly non-trivial single-site problem [5–8] with infinitely many coupled quantum degrees of freedom. This problem is, in fact, equivalent with an Anderson impurity model complemented by a self-consistency condition [6] and is thus amenable to numerical investigations [7] within a finite-temperature quantum Monte-Carlo approach [9]. In the absence of disorder this technique was already used by several groups to investigate the magnetic phase diagram [7,10] the Mott-Hubbard transition [11–13, 10], transport properties [14] and lately also superconductivity in a two-band version [15] of the Hubbard model in d = ∞.

Keywords

Hubbard Model Random Potential Antiferromagnetic Phase Magnetic Phase Diagram Band Filling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Critical phenomena, random systems, gauge theories, part II, Les Houches XLIII, eds. K. Osterwalder and R. Stora (North Holland, Amsterdam, 1986).Google Scholar
  2. [2]
    W. Metzner and D. Vollhardt, Phys. Rev. Lett. 62, 324 (1989).ADSCrossRefGoogle Scholar
  3. [3]
    D. Vollhardt, in Correlated Electron Systems, ed. V. J. Emery (World Scientific, Singapore, 1993), p. 57.Google Scholar
  4. [4]
    E. Müller-Hartmann, Z. Physik B74, 507 (1989); ibid B76, 211 (1989).Google Scholar
  5. [5]
    V. Janis, Z. Phys. B83, 227 (1991)Google Scholar
  6. V. Janiš and D. Vollhardt, Int. J. Mod. Phys. B6, 731 (1992).ADSGoogle Scholar
  7. [6]
    A. Georges and G. Kotliar, Phys. Rev. B45, 6479 (1992)ADSGoogle Scholar
  8. A. Georges, G. Kotliar and Q. Si, Int. J. Mod. Phys. B6, 705 (1992).MathSciNetADSGoogle Scholar
  9. [7]
    M. Jarrell, Phys. Rev. Lett. 69, 168 (1992)ADSCrossRefGoogle Scholar
  10. M. Jarrell and T. Pruschke, Z. Phys. B90, 187 (1993).ADSCrossRefGoogle Scholar
  11. [8]
    See also F. J. Ohkawa, J. Phys. Soc. Jpn. 60, 3218 (1991), ibid. 61, 1615 (1991).MathSciNetADSCrossRefGoogle Scholar
  12. [9]
    J. E. Hirsch and R. M. Fye, Phys. Rev. Lett. 56, 2521 (1986).ADSCrossRefGoogle Scholar
  13. [10]
    A. Georges and W. Krauth, Phys. Rev. 48, 7167 (1993).ADSCrossRefGoogle Scholar
  14. [11]
    M. J. Rozenberg, X. Y. Zhang and G. Kotliar, Phy s. Rev. Lett. 69, 1236 (1992).ADSCrossRefGoogle Scholar
  15. [12]
    A. Georges and W. Krauth, Phys. Rev. Lett. 69, 1240 (1992).ADSCrossRefGoogle Scholar
  16. [13]
    X. Y. Zhang, M. J. Rozenberg and G. Kotliar, Phys. Rev. Lett. 70, 1666 (1993); M. J. Rozenberg, G. Kotliar and X.Y. Zhang, preprint; Q. Si, M.J. Rozenberg, G. Kotliar, and A. E. Ruckenstein, preprint.ADSCrossRefGoogle Scholar
  17. [14]
    T. Pruschke, D. L. Cox and M. Jarrell, Phys. Rev. 47, 3553 (1993)ADSCrossRefGoogle Scholar
  18. M. Jarrell and T. Pruschke, Phys. Rev. B49, 1458 (1994).ADSGoogle Scholar
  19. [15]
    A. Georges, G. Kotliar and W. Krauth, Z. Physik B 92, 313 (1993).ADSGoogle Scholar
  20. [16]
    M. Jarrell, H. Akhlaghpour, and T. Pruschke, Phys. Rev. Lett. 70, 1670 (1993).ADSCrossRefGoogle Scholar
  21. [17]
    J. K. Freericks, M. Jarrell, and D. J. Scalapino, Phys. Rev. B48, 6302 (1993).ADSGoogle Scholar
  22. [18]
    V. Janiš, M. Ulmke, and D. Vollhardt, Europhys. Lett. 24, 287 (1993).ADSCrossRefGoogle Scholar
  23. [19]
    V. Dobrosavljević and G. Kotliar, Phys. Rev. Lett. 71, 3218 (1993), and preprint.ADSCrossRefGoogle Scholar
  24. [20]
    M. Ma, Phys. Rev. B26, 5097 (1982).Google Scholar
  25. [21]
    G. T. Zimanyi and E. Abrahams, Phys. Rev. Lett. 64, 2719 (1990).ADSCrossRefGoogle Scholar
  26. [22]
    V. Janis and D. Vollhardt, Phys. Rev. B46, 15 712 (1992).Google Scholar
  27. [23]
    M. Ulmke, V. Janiš, and D. Vollhardt, preprint RWTH/ITP-C 1/94.Google Scholar
  28. [24]
    R. Vlaming and D. Vollhardt, Phys. Rev. B45, 4637 (1992).ADSGoogle Scholar
  29. [25]
    A. Khurana, Phys. Rev. Lett. 64, C 1990 (1990).ADSCrossRefGoogle Scholar
  30. [26]
    M. Caffarel and W. Krauth, preprint.Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • V. Janiš
    • 1
  • M. Ulmke
    • 2
  • D. Vollhardt
    • 1
  1. 1.Institut für Theoretische Physik CTechnische Hochschule AachenAachenGermany
  2. 2.Institut für FestkörperforschungForschungszentrum JülichJülichGermany

Personalised recommendations