Charge-Spin Separation and Pairing in a Generalized Hubbard Model

  • Christian Kübert
  • Alejandro Muramatsu
Part of the NATO ASI Series book series (NSSB, volume 343)


Starting with the strong-coupling limit of the three-band Hubbard model, we construct an effective field-theory for holes moving in a slowly varying antiferromagnetic (AF) spin-background. The spin degrees of freedom are integrated out within an expansion in generalized Berry-phases. By choosing a spin-quantization axis for the fermions that rotates with the antiferromagnetic order parameter, a gauge theory is obtained where the fermions are minimally coupled to a vector gauge-field, whose fluctuations are controlled by the CP 1 model. As a consequence of the confining potential produced by the U(1) gauge-fields in (2+1) dimensions, bound states result corresponding to charge-spin separation and pairing. An alternative representation in the laboratory reference frame gives a coupling of spin- and fermionic currents that was first obtained by Shraiman and Siggia for the t — J model. The physical content of the gauge-fields is revealed in the global reference frame as chiral spin-fluctuations.


Reference Frame Hubbard Model Quantum Monte Carlo Global Reference Frame Laboratory Reference Frame 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V.J. Emery, Phys. Rev. Lett. 58, 2794 (1987)ADSCrossRefGoogle Scholar
  2. C.M. Varma, S. Schmitt-Rink, and E. Abrahams, Solid State Commun. 62, 681 (1987).ADSCrossRefGoogle Scholar
  3. 2.
    N. Nücker, J. Fink, J.C. Fuggle, P.J. Durham, W.M. Temmerman, Phys. Rev. B37, 5158 (1988).ADSGoogle Scholar
  4. 3.
    Y. Endoh et al., Phys. Rev. B37, 7443 (1988).ADSGoogle Scholar
  5. 4.
    G. Dopf, A. Muramatsu, and W. Hanke, Phys. Rev. Lett. 68, 353 (1992); Europhys. Lett. 17, 559 (1992)ADSCrossRefGoogle Scholar
  6. G. Dopf, J. Wagner, P. Dieterich, A. Muramatsu, and W. Hanke, Phys. Rev. Lett. 68, 2082 (1992).ADSCrossRefGoogle Scholar
  7. 5.
    F.C. Zhang and T.M. Rice, Phys. Rev. B37, 3759 (1988).ADSGoogle Scholar
  8. 6.
    E. Dagotto, Int. J. Mod. Phys. B5, 77 (1991).ADSGoogle Scholar
  9. 7.
    P.A. Bares and G. Blatter, Phys. Rev. Lett. 64, 2567 (1990).MathSciNetADSzbMATHCrossRefGoogle Scholar
  10. 8.
    S-W. Cheong et al., Phys. Rev. Lett. 67, 1791 (1991)ADSCrossRefGoogle Scholar
  11. T.E. Mason et al., Phys. Rev. Lett. 68, 1414 (1992).ADSCrossRefGoogle Scholar
  12. 9.
    R. Jackiw, Int. J. Mod. Phys. A3, 285 (1988).MathSciNetADSGoogle Scholar
  13. 10.
    A. Angelucci and G. Jug, Int. Jour. Mod. Phys. B3, 1069 (1989).ADSGoogle Scholar
  14. 11.
    B.I. Shraiman and E.D. Siggia, Phys. Rev. Lett. 61, 467 (1988); ibid. 62, 1564 (1989); Phys. Rev. B41, 350 (1990); ibid. 42, 2485 (1990).MathSciNetADSCrossRefGoogle Scholar
  15. 12.
    P. Prelov—ek, Phys. Lett. A 126, 287 (1988)ADSCrossRefGoogle Scholar
  16. J. Zaanen and A.M. Olés, Phys. Rev. B37, 4923 (1988)Google Scholar
  17. A. Muramatsu, R. Zeyher, and D. Schmeltzer, Europhys. Lett. 7, 473 (1988).ADSCrossRefGoogle Scholar
  18. 13.
    C. Kübert and A. Muramatsu, Phys. Rev. B47, 787 (1993).ADSGoogle Scholar
  19. 14.
    X.G. Wen, Phys. Rev. B39, 7223 (1989).ADSGoogle Scholar
  20. 15.
    R. Rajaraman, Solitons and instantons (North-Holland, Amsterdam, 1987).zbMATHGoogle Scholar
  21. 16.
    A. D’Adda, M. Lüscher, and P. Di Vecchia, Nucl. Phys. B146, 63 (1978).ADSCrossRefGoogle Scholar
  22. 17.
    N. Nagaosa and P.A. Lee, Phys. Rev. Lett. 64, 2450 (1990).ADSCrossRefGoogle Scholar
  23. 18.
    M. Reizer, Phys. Rev. B39, 1602 (1989); 40, 11571 (1989).ADSGoogle Scholar
  24. 19.
    J. Rossat-Mignod et al., Physica C 185–189, 86 (1991).CrossRefGoogle Scholar
  25. 20.
    M. Takigawa et al., Phys. Rev. B43, 247 (1991).ADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Christian Kübert
    • 1
  • Alejandro Muramatsu
    • 1
  1. 1.Physikalisches InstitutUniversität WürzburgWürzburgGermany

Personalised recommendations