Advertisement

Functional Integrals for Correlated Electrons

  • H. J. Schulz
Chapter
  • 387 Downloads
Part of the NATO ASI Series book series (NSSB, volume 343)

Abstract

Functional integral methods are one way of discussing the physics of interacting fermions which in many cases turns out to be particularly transparent and appealing. In particular in cases with a broken symmetry the use of the Hubbard-Stratonovich transformation1 often allows one to formulate the problem in a way that is both physically transparent and systematic. I here discuss some applications to the Hubbard model, both attractive and repulsive.

Keywords

Saddle Point Effective Action Hubbard Model Heisenberg Model Saddle Point Approximation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Hubbard, Phys. Rev. Lett. 3:77 (1959)ADSCrossRefGoogle Scholar
  2. R.L. Stratonovich, Sov. Phys. Dokl. 2:416 (1958).ADSGoogle Scholar
  3. 2.
    see e. g. J.W. Negele and H. Orland, “Quantum Many—Particle Systems”, Addison—Wesley, Redwood City (1988).zbMATHGoogle Scholar
  4. 3.
    P.W. Anderson, Phys. Rev. 112:1900 (1958).MathSciNetADSCrossRefGoogle Scholar
  5. 4.
    E. Abrahams and T. Tsuneto, Phys. Rev. 152:416 (1966).ADSCrossRefGoogle Scholar
  6. 5.
    A.A. Gomes and P. Lederer, J. Phys. (Paris) 38:231 (1977), and references therein.CrossRefGoogle Scholar
  7. 6.
    H.J. Schulz, Phys. Rev. Lett. 65:2462 (1990).ADSCrossRefGoogle Scholar
  8. 7.
    see also Z.Y. Weng, C.S. Ting, and T.K. Lee, Phys. Rev. B 43:3793 (1991)ADSCrossRefGoogle Scholar
  9. 8.
    F.D.M. Haldane, Phys. Lett. A 93:464 (1983).MathSciNetADSCrossRefGoogle Scholar
  10. 9.
    R. Shankar, Nucl. Phys. B 330:433 (1990), and references therein.MathSciNetADSCrossRefGoogle Scholar
  11. 10.
    J.R. Schrieffer, X.G. Wen, and S.C. Zhang, Phys. Rev. B 39:11663 (1989).ADSCrossRefGoogle Scholar
  12. 11.
    A. Singh and Z. Te—anovi—, Phys. Rev. B 41:614 (1990).ADSCrossRefGoogle Scholar
  13. 12.
    A.V. Chubukov and D.M. Frenkel, Phys. Rev. B 46:11884 (1992).ADSCrossRefGoogle Scholar
  14. 13.
    A.P. Prudnikov, Yu. A. Brychkov, and O.I. Marichev, “Integrals and Series, vol. 3”, Gordon and Breach.Google Scholar
  15. 14.
    S. Chakravarty, B.I. Halperin, and D.R. Nelson, Phys. Rev. B 39:2344 (1989).ADSCrossRefGoogle Scholar
  16. 15.
    H.J. Schulz, Phys. Rev. B 39:2940 (1989).ADSCrossRefGoogle Scholar
  17. 16.
    H.J. Schulz, Phys. Rev. Lett. 64:1445 (1990); J. Phys. France 50:2833 (1989).ADSCrossRefGoogle Scholar
  18. 17.
    M. Inui and P. B. Littlewood, Phys. Rev. B 44:4415 (1991).ADSCrossRefGoogle Scholar
  19. 18.
    B. Berg and M. Lüscher, Nucl. Phys. B 190:412 (1981)ADSCrossRefGoogle Scholar
  20. E. Fradkin and M. Stone, Phys. Rev. B 38:7215 (1988).MathSciNetADSCrossRefGoogle Scholar
  21. 19.
    Y. Nagaoka, Phys. Rev. 147:392 (1966).ADSCrossRefGoogle Scholar
  22. 20.
    B. Douçot and R. Rammal, Int. J. Mod. Phys. B 3:1755 (1989); H.J. Schulz, unpublished.ADSCrossRefGoogle Scholar
  23. 21.
    B. I. Shraiman and E. D. Siggia, Phys. Rev. Lett. 62:1564 (1989).ADSCrossRefGoogle Scholar
  24. 22.
    I. Affleck, Z. Zou, T. Hsu, and P. W. Anderson, Phys. Rev. B 38:745 (1988).ADSCrossRefGoogle Scholar
  25. 23.
    M. Pernici, Europhys. Lett. 12:75 (1990)ADSCrossRefGoogle Scholar
  26. S.C. Zhang, Phys. Rev. Lett. 65:120 (1990).ADSCrossRefGoogle Scholar
  27. 24.
    see e. g., P. A. Lee, Phys. Rev. Lett. 63:680 (1989).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • H. J. Schulz
    • 1
  1. 1.Laboratoire de Physique des SolidesUniversité Paris-SudOrsayFrance

Personalised recommendations