The Hubbard Model: Some Rigorous Results and Open Problems

  • Elliott H. Lieb
Part of the NATO ASI Series book series (NSSB, volume 343)


The Hubbard model of interacting electrons, like the Ising model of spin-spin interactions, is the simplest possible model displaying many “real world” features, but it is much more difficult to analyze qualitatively than the Ising model. After a third of a century of research, we are still not sure about many of its basic properties. This mini-review will explore what is known rigorously about the model and it will attempt to describe some open problems that are possibly within the range of rigorous mathematical analysis.


Bipartite Graph Ising Model Thermodynamic Limit Hubbard Model Hypercubic Lattice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [AL]
    M. Aizenman and E.H. Lieb, Magnetic properties of some itinerant-electron systems at T > 0, Phys. Rev. Lett. 65, 1470–1473 1990.ADSCrossRefGoogle Scholar
  2. [AP]
    P.W. Anderson, New approach to the theory of superexchange interactions, Phys. Rev. 115, 2–13 1959.MathSciNetADSzbMATHCrossRefGoogle Scholar
  3. [BH]
    H.A. Bethe, Zeits. f. Phys. 71, 205–226 (1931); English trans.: D.C. Mattis, The Mnny-Body Problem, World Scientific (1993), pp. 689-716.ADSCrossRefGoogle Scholar
  4. [CC]
    C.F. Coll III, Excitation spectrum of the one-dimensional Hubbard model, Phys. Rev. B 9, 2150–2159 1974.ADSCrossRefGoogle Scholar
  5. [CCK]
    S. Chakravarty, L. Chayes and S.A. Kivelson, Absence of pair binding in the U= ∞ Hubbard. Model, Lett. Math. Phys. 23, 265–270 1991.MathSciNetADSzbMATHCrossRefGoogle Scholar
  6. [CR]
    C.A. Coulson and G.S. Rushbrooke, Note on the method of molecular orbitals, Proc. Cambridge Philos. Soc. 36, 193–200 1940.ADSCrossRefGoogle Scholar
  7. [DLS]
    F.J. Dyson, E.H. Lieb and B. Simon, Phase transitions in quantum spin systems with isotropie and nonisotropic interactions J. Stat. Phys. 18, 335–383 (1978).MathSciNetADSCrossRefGoogle Scholar
  8. [DW]
    B. Doucot and X.G. Wen, Instability of the Nagaoka state with more than one hole, Phys. Rev. B 40, 2719–2722 1989.ADSCrossRefGoogle Scholar
  9. [EKS]
    F.H.L. Essler, V.E. Korepin and K. Schoutens, Complete solution of the one-dimensional Hubbard model, Phys. Rev. Lett. 67, 3848–3851 1991. The details are in Completeness of the SO(4) extended Bethe ansatz for the one-dimensional Hubbard model, Nucl. Phys. B 384, 431-458 (1982).ADSCrossRefGoogle Scholar
  10. [ES]
    F.H.L. Essler and V.E. Korepin, Scattering matrix and excitation spectrum of the Hubbard model, preprint (1993).Google Scholar
  11. [FK1]
    S. Fujirnoto and N. Kawakami, Persistent currents in mesoscopic Hubbard, rings with spinorbit interaction, Yukawa Institute preprint (July 1993).Google Scholar
  12. [FK2]
    L.M. Falicov and J.C. Kimball, Simple model for semiconductor-metal transitions: SmB 6 and transition metal oxides, Phys. Rev. Lett. 22, 997–999 1969.ADSCrossRefGoogle Scholar
  13. [FL1]
    M. Flicker and E.H. Lieb, Delta function fermi gas with two-spin deviates, Phys. Rev. 161, 179–188 1967.ADSCrossRefGoogle Scholar
  14. [FL2]
    J.K. Freericks and E.H. Lieb, The ground state of a general electron-phonon Hamiltonian is a spin singlet, in preparation.Google Scholar
  15. [FRDS]
    Y. Fand, A.E. Ruckenstein, E. Dagatto and S. Schmitt-Rink, Holes in the infinite U Hubbard model: Instability of the Nagaoka state, Phys. Rev. B 40, 7406–7409 1989.ADSCrossRefGoogle Scholar
  16. [GD]
    D.K. Ghosh, Nonexistence of magnetic ordering in the one and two dimensional Hubbard model, Phys. Rev. Lett. 27, 1584–1586 1971, [Errata, 28 330 (1972)].ADSCrossRefGoogle Scholar
  17. [GH]
    H. Grosse, The symmetry of the Hubbard model, Lett. Math. Phys. 18, 151–156 1989.MathSciNetADSzbMATHCrossRefGoogle Scholar
  18. [GM]
    M. Gaudin, Un système à une dimension de fermions en interaction, Phys. Letters 24A, 55–56 1967.ADSGoogle Scholar
  19. [GMC]
    M.C. Gutzwiller, The effect of correlation on the ferromagnetism of transition metals, Phys. Rev. Lett. 10, 159–162 1963.ADSCrossRefGoogle Scholar
  20. [H.T]
    J. Hubbard, Electron correlations in narrow energy bands, Proc. Roy. Soc. (London), A276, 238–257 1963.ADSGoogle Scholar
  21. [HL]
    O.J. Heilmann and E.H. Lieb, Violation of the non-crossing rule: the Hubbard Hamiltonian for benzene, Trans. N.Y. Acad. Sci. 33, 116–149 1970. Also in Ann. N.Y. Acad. Sci. 172, 583-617 (1971).Google Scholar
  22. [HM]
    Th. Hanisch and E. Müller-Hartmann: Ferromagnetism in the Hubbard Model: Instability of the Nagaoka State on the Square Lattice, Ann. Physik 2, 381–397 (1993)ADSCrossRefGoogle Scholar
  23. See also E. Müller-Hartmann, Th. Hanisch and R. Hirsch: Ferromagnetism, of Hubbard Models, Physica B 186–188, 834–836 (1993).CrossRefGoogle Scholar
  24. [K.T]
    J. Kanamori, Electron correlation and ferromagnetism of transition metals, Prog. Theor. Phys. 30, 275–289 1963.ADSzbMATHCrossRefGoogle Scholar
  25. [KK]
    K. Kubo and K. Kishi, Rigorous bounds on the susceptibility of the Hubbard, model, Phys. Rev. B 41, 4866–4868 1990.ADSCrossRefGoogle Scholar
  26. [KL]
    T. Kennedy and E.H. Lieb, An itinerant electron model with crystalline or magnetic long range order, Physica 138A, 320–358 1986.MathSciNetADSGoogle Scholar
  27. [KLS]
    T. Kennedy, E.H. Lieb and S. Shastry, Existence of Néel order in some spin 1/2 Heisenberg antiferromngnets, J. Stat. Phys. 53, 1019–1030 1988.MathSciNetADSCrossRefGoogle Scholar
  28. [KO]
    T. Koma, An extension of the thermal Bethe ansatz-one-dimensional Hubbard model, Prog. Theor. Phys. 83, 655–659 1990.MathSciNetADSzbMATHCrossRefGoogle Scholar
  29. [KT]
    T. Koma and H. Tasaki, Decay of superconducting and magnetic correlations in one-and two-dimensional Hubbard models, Phys. Rev. Lett. 68, 3248–3251 1992.ADSCrossRefGoogle Scholar
  30. [LEI]
    E.H. Lieb, Two theorems on the Hubbard model, Phys. Rev. Lett. 62, 1201–1204 1989, [Errata 62, 1927 (1989)].MathSciNetADSCrossRefGoogle Scholar
  31. [LE2]
    E.H. Lieb, Models, in Proceedings of the Solvay institute 14th conference on chemistry at the University of Brussels, May 1969, Phase transitions, Interscience, 1971.Google Scholar
  32. [LL1]
    E.H. Lieb and W. Liniger, Exact analysis of an interacting Bose gas. I. The general solution and the ground state, Phys. Rev. 130, 1605–1616 1963.MathSciNetADSzbMATHCrossRefGoogle Scholar
  33. [LL2]
    E.H. Lieb and M. Loss, Fluxes, Laplacians and Kasteleyn’s theorern, Duke Math. J. 71, 337–363 1993.MathSciNetzbMATHCrossRefGoogle Scholar
  34. [LLM]
    E.H. Lieb, M. Loss and R.J. McCann, Uniform density theorem for the Hubbard model, J. Math. Phys. 34, 891–898 1993.MathSciNetADSzbMATHCrossRefGoogle Scholar
  35. [LM1]
    E.H. Lieb and D.C. Mattis, Theory of ferromagnetism and the ordering of electronic energy levels, Phys. Rev. 125, 164–172 1962.ADSzbMATHCrossRefGoogle Scholar
  36. [LM2]
    E.H. Lieb and D.C. Mattis, Ordering energy levels of interacting spin systems, J. Math. Phys. 3, 749–751 1962.ADSzbMATHCrossRefGoogle Scholar
  37. [LvE]
    W. von der Linden and D.M. Edwards, Ferrrom, agnetism in the Hubbard model, J. Phys. Cond. Matt. 3, 4917–4940 1991.ADSCrossRefGoogle Scholar
  38. [LW]
    E.H. Lieb and F.Y. Wu, Absence of Mott transition in an exact solution of the short-range, one-band model in one dimension, Phys. Rev. Lett. 20, 1445–1448 1968.ADSCrossRefGoogle Scholar
  39. [MA]
    A.D. MacLachlan, The pairing of electronic states in alternant hydrocarbons, Mol. Phys. 2, 271–284 1959; Electrons and holes in alternant hydrocarbons, Mol. Phys. 4, 49-56 (1961).ADSCrossRefGoogle Scholar
  40. [Mil]
    A. Mielke, Ferromagnetic ground states for the Hubbard model on line graphs, J. Phys. A 24, L73–L77 1991; Ferromagnetism in the Hubbard model on line graphs and further considerations, J. Phys. A 24, 3311-3321 (1991); Exact ground states for the Hubbard model on the kagome lattice, J. Phys. A 25, 4335-4345 (1992); Ferromagnetism in the Hubbard model and Hund’s rule, Phys. Lett. A 174, 443-448 (1993).MathSciNetADSCrossRefGoogle Scholar
  41. [Mi2]
    A. Mielke, The one-dimensional Hubbard model for large or infinite U, J. Stat. Phys. 62, 509–528 1991.MathSciNetADSCrossRefGoogle Scholar
  42. [M.T]
    J.B. McGuire, Interacting fermions in one dimension. I. Repulsive potential, J. Math. Phys. 6, 432–439 1965.MathSciNetADSzbMATHCrossRefGoogle Scholar
  43. [MS]
    O. McBryan and T. Spencer, On the decay of correlations in SO(n)-symmetric ferromagnets, Commun. Math. Phys. 53, 299–302 1977.MathSciNetADSCrossRefGoogle Scholar
  44. [MT]
    A. Mielke and H. Tasaki, Ferromagnetism in the Hubbard model, Commun. Math. Phys. (in press).Google Scholar
  45. [MV]
    W. Metzner and D. Vollhardt, Correlated, lattice fermions in d= ∞ dimensions, Phys. Rev. Lett. 62, 324–327 1989.ADSCrossRefGoogle Scholar
  46. [NY]
    Y. Nagaoka, Ferromagnetism in a narrow, almost half-filled s band, Phys. Rev. 147, 392–405 1966.ADSCrossRefGoogle Scholar
  47. [OA]
    A.A. Ovchinnikov, Zh. Eksp. Teor. Fiz. 57, 2137–2143 (1969). Engl, trans. Excitation spectrum in the one-dimensional Hubbard model, Sov. Phys. JETP 30, 1160-1163 (1970).Google Scholar
  48. [PJ]
    J.A. Pople, Electron interaction in unsaturated hydrocarbons, Trans. Faraday Soc. 49, 1375–1385 1953.CrossRefGoogle Scholar
  49. [PP]
    R. Pariser and R.G. Parr, A semi-empirical theory of the electronic spectra and electronic structure of complex unsaturated hydrocarbons I. and II., J. Chem. Phys. 21, 466–471, 767-776 (1953).ADSCrossRefGoogle Scholar
  50. [SA1]
    A. Sütö, Absence of highest spin ground, states in the Hubbard model, Commun. Math. Phys. 140, 43–62 1991.ADSzbMATHCrossRefGoogle Scholar
  51. [SA2]
    A. Sütö, Bounds on ferromagnetism at T > 0 in the hard-core lattice model, Phys. Rev. B. 43, 8779–8781 1991; The U = ∞ Hubbard model at positive temperature in From Phase Transitions to Chaos, G. Gyorgi ed., World Scientific (1992).ADSCrossRefGoogle Scholar
  52. [SB]
    B.S. Shastry, Infinite conservation laws in the one-dimensional Hubbard model, Phys. Rev. Lett. 56, 1529–1531 1986, [Errata 56, 2334 (1986)] and Exact integrability of the one-dimensional Hubbard model, Phys. Rev. Lett. 56, 2453-2456 (1986). The general method is clarified in Decorated star-triangle relations and exact integrability of the one-dimensional Hubbard model, J. Stat. Phys. 50, 57-79 (1988).MathSciNetADSzbMATHCrossRefGoogle Scholar
  53. [SH]
    H. Shiba, Magnetic susceptibility at zero temperature for the one-dimensional Hubbard model, Phys. Rev. B 6, 930–938 1972.ADSCrossRefGoogle Scholar
  54. [SKA]
    B.S. Shastry, H.R. Krishnamurthy and P.W. Anderson, Instability of the Nagaoka ferromagnetic state of the U= ∞ Hubbard model, Phys. Rev. B 41, 275–2379 1990.CrossRefGoogle Scholar
  55. [SQ]
    S.Q. Shen and Z.M. Qiu, Exact demonstration of off-diagonal long-range order in the ground state of a Hubbard model, Phys. Rev. Lett. 71, 4238–4240 1993.ADSCrossRefGoogle Scholar
  56. [SQT1]
    S.Q. Shen, Z.M. Qiu and G.S. Tian, The Nagaoka state and its stability in the one-band Hubbard m, odel, Phys. Lett. A 178, 426–430 1993.ADSCrossRefGoogle Scholar
  57. [SQT2]
    S.Q. Shen and Z.M. Qiu and Tian, Ferrimagnetic long-range order in the hubbard model, submitted to Phys. Rev. Lett. (1993).Google Scholar
  58. [TB]
    B. Tóth, Failure of saturated ferromagnetism for the Hubbard model with two holes, Lett. Math. Phys. 22, 321–333 1991.MathSciNetADSzbMATHCrossRefGoogle Scholar
  59. [TD]
    D.T. Thouless, Proc. Phys. Soc. (London), Exchange in Solid 3 He and the Heisenberg Hamiltonian 86, 893–904 (1965).MathSciNetGoogle Scholar
  60. [TGI]
    G.S. Tian, A simplified proof of Nagaoka’s theorem, J. Phys. A 23, 2231–2236 1990.MathSciNetADSCrossRefGoogle Scholar
  61. [TG2]
    G.S. Tian, The Nagaoka state in the one-band Hubbard model with two and more holes, J. Phys. A 24 513–521 (1991).MathSciNetADSCrossRefGoogle Scholar
  62. [TG3]
    G.S. Tian, Stability of the Nagaoka state in the one-band Hubbard model, Phys. Rev. B 44, 4444–4448 1991.ADSCrossRefGoogle Scholar
  63. [TG4]
    G.S. Tian, Rigorous theorems on off-diagonal long range order in the negative U Hubbard model, Phys Rev. B 45 3145–3148 (1992).ADSCrossRefGoogle Scholar
  64. [TH1]
    H. Tasaki, Extension of Nagaoka’s theorem on the large U Hubbard, Model, Phys. Rev. B 40, 9192–9193 1989.ADSCrossRefGoogle Scholar
  65. [TH2]
    H. Tasaki, Ferromagnetism in Hubbard models with degenerate single-electron ground states, Phys. Rev. Lett. 69, 1608–1611 1992.MathSciNetADSzbMATHCrossRefGoogle Scholar
  66. [TM]
    M. Takahashi, Magnetization curve for the half-filled Hubbard model, Prog. Theor. Phys. 42, 1098–1105 1969 and Magnetic susceptibility for the half-filled Hubbard model, Prog. Theor. Phys. 43, 1619 (1970).ADSCrossRefGoogle Scholar
  67. [TS]
    S.A. Trugman, Exact results for the U= ∞ Hubbard model, Phys. Rev. B 42, 6612–6613 1990.MathSciNetADSzbMATHCrossRefGoogle Scholar
  68. [UTS]
    K. Ueda, H. Tsunetsugu and M. Sigrist, Singlet ground staie of the periodic Anderson model at half filling: a rigorous result, Phys. Rev. Lett. 68, 1030–1033 1992.ADSCrossRefGoogle Scholar
  69. [WE]
    F. Woynarovich and H.P. Eckle, Finite size corrections for the low lying states of a. half-filled Hubbard chain, J. Phys. A 20, L443–449 1987.ADSCrossRefGoogle Scholar
  70. [WF]
    F. Woynarovich, Excitations with complex wavenumbers in a Hubbard chain: I. States with one pair of complex wavenumbers, J. Phys. C 15, 85–96 and II. States with several pairs of complex wavenumbers, 97-109 (1982).Google Scholar
  71. [WR]
    M.B. Walker and Th. W. Ruijgrok, Absence of magnetic ordering in one and two dimensions in a m, any-band model for interacting electrons in a metal, Phys. Rev. 171, 513–515 1968.ADSCrossRefGoogle Scholar
  72. [YC]
    C.N. Yang, Some exact results for the many-body problem in one-dimension with repulsive delta-function interaction, Phys. Rev. Lett. 19, 1312–1315 1967.MathSciNetADSzbMATHCrossRefGoogle Scholar
  73. [YZ]
    C.N. Yang and S.C. Zhang, SO(4) symmetry in a Hubbard model, Mod. Phys. Lett. B4, 759–766 1990.ADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Elliott H. Lieb
    • 1
  1. 1.Departments of Mathematics and PhysicsPrinceton UniversityPrincetonUSA

Personalised recommendations