Skip to main content

Electrostatic Forces in Electrorheological Fluids

  • Chapter
Progress in Electrorheology

Abstract

Electrorheological (ER) fluids generally consist of highly polarizable or conductive particles in insulating fluids. Application of electric fields of order 1 kV/mm significantly alters the rheology of these fluids, thus making possible a wide range of electro-mechanical devices, such as automotive shock absorbers. One of the critical issues in the performance of ER fluid devices is the strength of the fluid. In this paper, we summarize our current understanding of the electrostatic forces in ER fluids and how they affect fluid properties. This understanding is based on detailed theoretical analysis of the electric fields between particles, including finite element analysis (FEA), in addition to measurements of shear modulus and yield strength of model systems. The effects of dielectric constant mismatch, conductivity mismatch, insulating layers on metallic particles, and fluid breakdown are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. C. Davis, Finite-element analysis of particle-particle forces in electrorheological fluids, Appl. Phys. Lett. 60:319 (1992).

    Article  Google Scholar 

  2. L. C. Davis, Polarization forces and conductivity effects in electrorheological fluids, J. Appl. Phys. 72:1334 (1992).

    Article  CAS  Google Scholar 

  3. R. A. Anderson, Effects of finite conductivity in electrorheological fluids, in: “Proceedings of the Third International Conference on Electrorheological Fluids”, R. Tao, ed., World Scientific, Singapore (1992), p. 81.

    Google Scholar 

  4. Prof. P. P. Phule (private communication) has suggested that small BaTiO3 particles may not behave as linear dielectrics and may possess a conducting, hydroxyl surface layer. However, the present experiments were done with large particles that we expect to be multidomain and thus to show a linear response. Some conductivity effects could occur at low frequencies, but larger frequency excitation eliminates these effects.

    Google Scholar 

  5. T. J. Garino, D. Adolf, and B. Hance, The effect of solvent and particle dielectric constants on the electrorheological properties of water-free ER fluids, in: “Proceedings of the Third International Conference on Electrorheological Fluids,” R. Tao, ed., World Scientific, Singapore (1992), p. 167.

    Google Scholar 

  6. J. M. Ginder and L. C. Davis, Viscoelasticity of electrorheological fluids: Role of electrostatic interactions, in: “Proceedings of the Fourth International Conference on Electrorheological Fluids,” R. Tao, ed., World Scientific, Singapore, (1994), p. 267.

    Google Scholar 

  7. N. Felici, J.-N. Foulc, and P. Atten, A conduction model of electrorheological effect, in: “Proceedings of the Fourth International Conference on Electrorheological Fluids,” R. Tao, ed., World Scientific, Singapore, (1994), p. 139.

    Google Scholar 

  8. L. C. Davis, The metal-particle/insulating oil system: An ideal electrorheological fluid, J. Appl. Phys. 73:80 (1993).

    Article  Google Scholar 

  9. H. Block, J. P. Kelly, A. Qin, and T. Watson, Materials and mechanisms in electrorheology, Langmuir 6:6 (1990).

    Article  CAS  Google Scholar 

  10. F. E. Filisko, Rheological properties and models of dry ER materials, in: “Proceedings of the Third International Conference on Electrorheological Fluids,” R. Tao, ed., World Scientific, Singapore (1992), p. 116.

    Google Scholar 

  11. W. S. Yen and P. J. Achorn, A study of the dynamical behavior of an electrorheological fluid, J. Rheol. 35:1375 (1991).

    Article  CAS  Google Scholar 

  12. Y. Chen and H. Conrad, Effects of water content on the electrorheology of corn starch/corn oil dispersions, in: ASME AMD-Vol. 175, “Developments in Non-Newtonian Flows 1993,” D. A. Siginer, W. E. Van Arsdale, M. C. Altan, and A. N. Alexandrou, eds., ASME, New York (1993), p. 199.

    Google Scholar 

  13. H. Conrad, Y. Chen, and A. F. Sprecher, Electrorheology of suspensions of zeolite particles in silicone oil, in: “Proceedings of the Second International Conference on Electrorheological Fluids,” J. D. Carlson, A. F. Sprecher, and H. Conrad, eds., Technomic, Lancaster, PA (1990), p. 252.

    Google Scholar 

  14. D. J. Klingenberg, F. van Swol, and C. F. Zukoski, The small shear rate response of electrorheological suspensions. II. Extensions beyond the point-dipole limit, J. Chem. Phys. 94: 6170 (1991).

    Article  CAS  Google Scholar 

  15. Y. Asako, S. Ono, R. Aizawa, and T. Kawakami, Properties of electrorheological fluids containing numerously sulfonated polymer particles, Polymer Preprints 35:352 (1994).

    CAS  Google Scholar 

  16. J. W. Pialet and D. R. Clark, The dependence of shear stress and current density on temperature and field for a model electrorheological fluid, Polymer Preprints 35:367 (1994).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Davis, L.C., Ginder, J.M. (1995). Electrostatic Forces in Electrorheological Fluids. In: Havelka, K.O., Filisko, F.E. (eds) Progress in Electrorheology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1036-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1036-3_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1038-7

  • Online ISBN: 978-1-4899-1036-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics