Skip to main content

The Dependence of Shear Stress and Current Density on Temperature and Field for Model Electrorheological Fluids

  • Chapter

Abstract

Electrorheological (ER) fluids have the potential of greatly improving the electronic control of mechanical devices. A lack of theoretical understanding of the ER effect has hindered commercialization of these materials. There has been considerable discussion in the literature on the nature of the ER response1,2,3,4. Performance data have been fit to simple equations by many researchers to gain insight into mechanisms and possible relationships between the variables. This can be particularly difficult since several mechanisms are probably contributing to the observed performance and the dominant mechanism probably varies with field strength, field frequency, temperature and shear rate. Most published work tends to deal with a single relationship for a single fluid. Because each author uses a unique combination of fluid, test device and operating conditions, it is difficult to combine data to get a complete picture. Examining several relationships for the same system under the same conditions may allow identification of additional underlying relationships.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gast, A.P.; Zukoski, C.F. Adv. Coll. Int. Sci. 1989, 30, 153.

    Article  CAS  Google Scholar 

  2. Block, H.; Kelly, J.P. J. Phys D: Appl. Phys. 1988, 21, 1661.

    Article  CAS  Google Scholar 

  3. Jordan, T.C.; Shaw, M.T. IEEE Trans. Elect. Insul. 1989, 24, 849.

    Article  CAS  Google Scholar 

  4. Block, H.; Kelly, J.P.; Qin, A.; Watson, T. Langmuir 1990, 6, 6.

    Article  CAS  Google Scholar 

  5. Pialet, J.W.; Bryant, C.P.; Lal, K. WO 9307244.

    Google Scholar 

  6. Foulc, J.N.; Atten, P.; Felici, N.J. In Proc. 1993 IEEE Int. Conf. on Conductivity and Breakdown in Dielectric Liquids; p 504.

    Google Scholar 

  7. Davis, L.C.; Ginder, J.M. Polymer Preprints 1994, 64(2):321.

    Google Scholar 

  8. Conrad, H.; Chen, Y.; Sprecher, A.F. In Proc. 2nd Int. Conf. on Electrorheological Fluids; Carlson, J.D.; Sprecher, A.F.; Conrad, H., Eds., Technomic, Lancaster, 1990, p 252.

    Google Scholar 

  9. Winslow, W.M. J. Appl Phys. 1949, 20:1137.

    Article  CAS  Google Scholar 

  10. Uejima, H. Japan J. Appl. Phys. 1972, 11:319.

    Article  CAS  Google Scholar 

  11. Katsikopoulos, P.V.; Zukoski, C.F. Polymer Preprints 1994, 64:(2):385.

    Google Scholar 

  12. Bullough, W.A.; Peel, D.J.; Firoozian, R. In Proc. 1st Int. Conf. on Electrorheological Fluids; Conrad, H.; Sprecher, A.F.; Carlson, J.D., Eds., NCSU College of Engineering Publications, 1989, p 99.

    Google Scholar 

  13. Conrad, H.; Shamala, A.R.; Sprecher, A.F. In Proc. 1st Int. Conf on Electrorheological Fluids; Conrad, H.; Sprecher, A.F.; Carlson, J.D., Eds., NCSU College of Engineering Publications, 1989, p 47.

    Google Scholar 

  14. Frood, D.G. In Proc. 2nd Int. Conf. on Electrorheological Fluids; Carlson, J.D.; Sprecher, A.F.; Conrad, H., Eds., Technomic, Lancaster, 1990, p 265.

    Google Scholar 

  15. Stangroom, J. J. Stat. Phys. 1991, 64:1059.

    Article  Google Scholar 

  16. Evans, L.; Harness, I.; Kermode, P.; Stangroom, J. In Proc. Int. Conf. on Electrorheological Fluids, Tao, R., Ed., World Scientific, Singapore, 1992, p 154.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pialet, J.W., Clark, D.R. (1995). The Dependence of Shear Stress and Current Density on Temperature and Field for Model Electrorheological Fluids. In: Havelka, K.O., Filisko, F.E. (eds) Progress in Electrorheology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1036-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1036-3_20

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1038-7

  • Online ISBN: 978-1-4899-1036-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics