Overview of ER Technology

  • Frank E. Filisko


Electro-rheological materials (ERM) are materials whose rheological properties are strong functions of the electric field strength imposed upon them. ERM are typically fluids in the absence of an electric field but under constant shear stress at high enough fields, the materials can solidify into viscoelastic solids. In the liquid state during flow, these materials exhibit an apparent viscosity which can be increased by thousands of times by the application of an electric field. In their solid state, the materials are viscoelastic and characterized by complex modulii of which both the real and complex parts are strong functions of the electric field. Further, all field induced mechanical changes are virtually instantaneously reversible. The molecular mechanisms responsible for the phenomenon are however poorly understood as are the flow characteristics.


Hysteresis Loop Apparent Viscosity Electrorheological Fluid Applied Electric Field Strength Nonlinear Viscoelastic Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Duff, A.W. (1896), Phys. Rev., 4, 23.Google Scholar
  2. 2.
    Winslow, W.M. (1947), “Methods and means for transmitting electrical impulses into mechanical force”, (U.S.Pat.), 25 Mar. 1947, No.2417850.Google Scholar
  3. 3.
    Winslow, W.M. (1949). “Induced fibration of suspensions”, J. Appl. Phys. 20:1137–1140.CrossRefGoogle Scholar
  4. 4.
    Winslow, W.M. (1953), “Field controlled hydraulic device”, (U.S.Pat.), 8 Dec. 1953, No. 2661596.Google Scholar
  5. 5.
    Winslow, W.M.(1962), “Field response force transmitting compositions”, (U.S.Pat.), 1962, No. 3047507.Google Scholar
  6. 6.
    Block, H. and J.P. Kelly (1988). “Electrorheology”, J. Phys. D: Appl. Phys. 21:1661–1677.CrossRefGoogle Scholar
  7. 7.
    Uejima, H. (1972). “Dielectric mechanism and rheological properties of electro-fluids,” Jap. J. Appl. Phys. 11(3): 319–326.CrossRefGoogle Scholar
  8. 8.
    Sugimoto, N. (1977), “Winslow effect in ion exchange-resin dispersions”, Bull. Jap. Soc. Mech. Eng. 20(149), 1476.CrossRefGoogle Scholar
  9. 9.
    Trapeznikov, A.A., Petrzhik, G.G. and O.A. Cherlkova (1981), “Electrorheological properties of nonaqueous dispersions of titanium dioxide and silicon dioxide in relation to concentration and moisture content of filler”, Kolloid Z. 43(6), 1134.Google Scholar
  10. 10.
    Goosens, J.(1987), “Electroviscous fluids”, (U.S.Pat.), 27 Oct. 1987, No. 4702855.Google Scholar
  11. 11.
    Klass, D.L. and T.W. Martinek (1966), “Preparation of silica for use in fluid responsive compositions,” (U.S.Pat.), 10 Oct., No. 3250726.Google Scholar
  12. 12.
    Filisko, F.E. and W.E. Armstrong (1988). “Electric field dependent fluids”, (U.S.Pat.), 17 May 1988, No. 4744914.Google Scholar
  13. 13.
    Treasurer, U., L. H. Radzilowski and F.E. Filisko (1991). “Polyelectrolytes as inclusions in water free electrorheological materials: chemical characteristics,” J. Rheol. 35(4).Google Scholar
  14. 14.
    Filisko, F.E. and L.H. Radzilowski (1990). “Intrinsic mechanism for activity of alumino-silicate based electrorheological fluids”, J. Rheol. 34(4): 539–552.CrossRefGoogle Scholar
  15. 15.
    Klass, D.L. and T.W. Martinek (1967a). “Electroviscous fluids I. Rheological properties,” J. Appl. Phys. 38(1): 67–74.CrossRefGoogle Scholar
  16. 16.
    Brooks, D., J. Goodwin, C. Hjelm, L. Marshall, C. Zukowski (1986). “Viscoelastic studies on an electrorheological fluid.”, Colloids Surf. 18:293.CrossRefGoogle Scholar
  17. 17.
    Klass, D.L. and T.W. Martinek (1967b). “Electroviscous fluids II: Electrical properties,” J. Appl. Phys. 38(1): 75–80.CrossRefGoogle Scholar
  18. 18.
    Gast, A.P. and CF. Zukoski (1989), “Electrorheological fluids as colloidal suspensions”, Adv. Colloid Int. Sci.,30, 153.Google Scholar
  19. 19.
    Pohl, H.A. (1951). “The motion and precipitation of suspensions in divergent electric fields”, J. Appl, Phys. 22(7): 869–871.CrossRefGoogle Scholar
  20. 20.
    Voet, A. (1947) “Dielectrics and rheology of non-aqueous dispersions,” J. Phys. Colloid Chem., 51:1037–1063.CrossRefGoogle Scholar
  21. 21.
    Davies, J.T. and E.K. Rideal (1961). Interfacial Phenomena, Ch.2, Academic Press, NY.Google Scholar
  22. 22.
    Lyklema, J. (1985), “Interfacial Chemistry of Disperse Systems”, J. Matls.Ed. 7(2), 211.Google Scholar
  23. 23.
    VonHippel, A.R. (1954). Dielectric and Waves, pp. 228–234, John Wiley & Sons, Inc., New York.Google Scholar
  24. 24.
    Dukhin, S.S. and V.N. Shilov (1974). Dielectric Phenomena and the Double Layer in Disperse Systems and Polyelectrolyte, translated from Russian by D. Lederman, Keter Publishing House Jerusalem Ltd.Google Scholar
  25. 25.
    Deinega, Y.F. and G.V. Vinogradov (1984). “Electric fields in the rheology of disperse systems,”, Rheol. Acta 23:636–651.CrossRefGoogle Scholar
  26. 26.
    Kitahara, A. (1984). “Nonaqueous systems”, in Electrical Phenomena at Interfaces: Fundamentals, Measurements and Applications, eds. A. Kitahara and A Watanabe, pp. 119-143, Marcel Dekker, Inc., New York.Google Scholar
  27. 27.
    Conway, B.E. and A. Dobry-Duclaux (1960), “Viscosity of suspensions of electrically charged particles and solutions of polymeric electrolytes”, in Rheology: Theory and Applications, Vol.3, ed. F.R. Eirich, Academic Press, NY.Google Scholar
  28. 28.
    Schul’man, Z.P., Y.F. Deinega, R.G. Gorodkin, and A.D. Matsepuro (1971). “Some aspects of electrorheology,”, Prog. in Heat and Mass Transfer 4:109–125.Google Scholar
  29. 29.
    Maxwell, J.C. (1892). Electricity and Magnetism, Vol.1. 452, Claredon Press, Oxford.Google Scholar
  30. 30.
    Hedvig, P. (1977), Dielectric spectroscopy of polymers, John Wiley & Sons, Inc., New York, pp.282–296.Google Scholar
  31. 31.
    Block, H. and J.P. Kelly (1985). Proc. IEE Colloq. 14:1.Google Scholar
  32. 32.
    Block, H., J.P. Kelly, A. Qin, and T. Watson (1990). “Materials and mechanisms in electrorheology”, Langmuir 6(1): 6–14.CrossRefGoogle Scholar
  33. 33.
    Breck, S.W. (1974). Zeolite Molecular Sieves, John Wiley & Sons, Inc., New York.Google Scholar
  34. 34.
    Denkewicz, R.P. (1987). “Zeolite science: an overview”, J. Matls. Ed. 9(15): 519–585.Google Scholar
  35. 35.
    Barrier, R.M. (1959), Brit. Chem. Eng. 5:1.Google Scholar
  36. 36.
    Freeman, D.C. and D.N. Stamires (1961), J. Chem. Phys. 35, 799.CrossRefGoogle Scholar
  37. 37.
    Oosawa, F. (1971). Polyelectolytes, Marcel Dekker, Inc., New York.Google Scholar
  38. 38.
    F.E. Filisko (1993), “Materials aspects of ER fluids”, in Electrorehological Fluids: A Research Needs Assessment, Department of Energy Report DOE/ER/30172, May.Google Scholar
  39. 39.
    Yang, I-K and A.D. Shine (1991), “Electrorheology of Poly(n-hexyl isocyanate) solutions”, presented at Soc. of Rheology meeting, Oct.2–24, 1991 (Rochester NY.Google Scholar
  40. 40.
    Conrad, H., M. Fisher, A.F. Sprecher (1989). “Characterization of the structure of a model electrorheological fluid employing stereology.” Electrorheological Fluids-Proceedings of the Second International Conference on ER Fluids (pub. in 1990), Raleigh, North Carolina, USA, August 7–9, Technomic Pub. Co., Inc.Google Scholar
  41. 41.
    Sprecher, A.F., Carlson, J.D., and H. Conrad (1987), “Electrorheology at small strains and strain rates of suspensions of silica particles in silicone oil”, Matl. Sci. and Eng. 95, 187–197.CrossRefGoogle Scholar
  42. 42.
    Frisch, H.L. and R. Simha (1956). “The viscosity of colloidal suspensions and macromolecular solutions” in Rheology: Theory and Applications, Vol.1, ed. F.R. Eirich, chap. 14, Academic press, NY.Google Scholar
  43. 43.
    Gamota, D.R. and F.E. Filisko (1991a), “Dynamic mechanical studies of electrorheological materials: Moderate frequencies”, J. Rheol. 35(3), 399–426.CrossRefGoogle Scholar
  44. 44.
    Gamota, D.R. and F.E. Filisko (1991b), “High frequency dynamic mechanical study of an aluminosilicate electrorheological material”, J. Rheol. 35(7), 1411–1426.CrossRefGoogle Scholar
  45. 45.
    Stanway, R., Sproston, J. and R. Firoozian(1989), “Identification of damping law on an electrorheological fluid: a sequential fitting approach”, J. Dynamic Systems: Measurement & Control 111, 91-95.Google Scholar
  46. 46.
    Bullough, W. A. and M. B. Foxon (1978). “A proportionate Coulomb and viscously damped isolation system.” J. Sound & Vib. 56(1): 35–44.CrossRefGoogle Scholar
  47. 47.
    Shul’man, Z. P., B. M. Khusid, E.V. Korobkov and E.P. Khizhinsky (1987). “Damping of mechanical-system oscillations by a non-Newtonian fluid with electric-field dependent parameters.”, J. Non-Newtonian Fluid Mechanics 25:329–346.CrossRefGoogle Scholar
  48. 48.
    Saito, N. and T. Kato (1957), “Viscoelasticity and complex dielectric constant in the presence of an electric field and shear laminar flow in macromolecular solutions”, J. Phys. Soc. Japan 12(12), 1393–1397.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Frank E. Filisko
    • 1
  1. 1.Materials Science and Engineering and Macromolecular Science and EngineeringThe University of MichiganAnn ArborUSA

Personalised recommendations