Skip to main content

High Field Conduction of Liquids in Contact with Polymeric Material with Reference to Electrorheological Fluids

  • Chapter
Progress in Electrorheology

Abstract

The conduction model of electrorheological (ER) effect appears to account qualitatively for the dependence of yield stress on electric field intensity in some ER fluids under DC applied voltage. This model is based on the assumption of the electrical conductivity of the suspending liquid varying exponentially as a function of the square root of the electric field. The field dependence of the liquid conduction in conditions typical of those of working ER fluids is investigated experimentally by examining the conduction properties of a layer of mineral oil lying between sheets of a slightly conducting polymer covering the electrodes. The results presented show that the current in the liquid arises mainly not from the field enhanced dissociation of electrolytic species dissolved in the liquid bulk but from injections of ions occurring at the solid/liquid interfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.A. Anderson, Proceed. 3rd Intern. Conf. Electrorheological Fluids, R. Tao (Ed.), World Scientific, Singapore, 1992, pp. 81-90.

    Google Scholar 

  2. L.C. Davis, J. Appl. Phys., 72, p. 1334 (1992).

    Article  CAS  Google Scholar 

  3. J.-N. Foulc, N. Félici and P. Atten, C. R. Acad Sci. Paris, 314, Ser. II, pp. 1279–1283 (1992).

    CAS  Google Scholar 

  4. J.-N. Foulc, P. Atten and N. Félici, J. Electrostatics, 33, pp. 103–112 (1994).

    Article  Google Scholar 

  5. J.-N. Foulc, P. Atten and N. Félici, C. R. Acad Sci. Paris, 317, Ser. II, p. 5–11 (1993).

    Google Scholar 

  6. P. Atten, J.-N. Foulc and N. Félici, Int. J. Modern Physics B, 8, pp. 2731–2745 (1994).

    Article  CAS  Google Scholar 

  7. J.-N. Foulc and P. Atten, Proceed. 4th Intern. Conf. Electrorheological Fluids, R. Tao (Ed.), World Scientific, Singapore, 1994, pp 358-371.

    Google Scholar 

  8. N. Felici, Dir. Cur., 2, pp. 90–99 (1972).

    Google Scholar 

  9. A. Denat, B. Gosse and J.-P. Gosse, J. Electrostatics, 7, pp 205–225 (1979).

    Article  Google Scholar 

  10. G. Briere and F. Gaspard, J. Chimie Physique, 64, pp. 1071–1084 (1967).

    CAS  Google Scholar 

  11. J.J. Thomson and G.P. Thomson, “Conduction of electricity through gases”, Cambridge Univ. Press, London, 1928.

    Google Scholar 

  12. N. Bjerrum, Kgl. Danske Vid. Selskab, Math — fys medd., 7, p. 9 (1926).

    Google Scholar 

  13. R.M. Fuoss, J. Amer. Chem. Soc, 82, pp. 1013 (1960).

    Article  CAS  Google Scholar 

  14. L. Onsager, J. Chem. Phys., 2, pp 599–615 (1934).

    Article  CAS  Google Scholar 

  15. A. Persoons, J. Phys. Chem., 78, pp. 1210 (1974).

    Article  CAS  Google Scholar 

  16. F. Nauwelaers, L. Hellemans and A. Persoons, J. Phys. Chem., 80, pp 767–775 (1976).

    Article  CAS  Google Scholar 

  17. A. Denat, B. Gosse and J.-P. Gosse, J. Electrostatics, 12, pp 197–205 (1982).

    Article  CAS  Google Scholar 

  18. Z. Randriamalala, A. Denat, J.P. Gosse and B. Gosse, IEEE Trans. Electr. Insul, EI-20, pp 167–176 (1985).

    Article  CAS  Google Scholar 

  19. A. Denat, Doctoral Thesis, Grenoble University, 1982.

    Google Scholar 

  20. G. Briere, G. Cauquis, B. Gosse and D. Serve, J. Chimie Phys., 66, pp 44–53 (1969).

    CAS  Google Scholar 

  21. B. Gosse, Electroanal. Chem. & Interfacial Electrochem., 61, pp 265–279 (1975).

    Article  CAS  Google Scholar 

  22. D.F. Blossey, Phys. Rev. B, 9, pp. 5183–5187 (1974).

    Article  CAS  Google Scholar 

  23. K.P. Charle and F. Willig, Chem. Phys. Lett., 57, pp. 253–258 (1978).

    Article  CAS  Google Scholar 

  24. A. Alj, A. Denat, J.P. Gosse, B. Gosse and I. Nakamura, IEEE Trans. Electr. Insul, EI-20, pp 221–231 (1985).

    Article  CAS  Google Scholar 

  25. A. Denat, B. Gosse and J.-P. Gosse, J. Electrostatics, 11, pp 179–194 (1982).

    Article  CAS  Google Scholar 

  26. A. Alj, J.P. Gosse, B. Gosse, A. Denat and M. Nemamcha, Revue Phys. Appl, 22, pp 1043–1053 (1987).

    Article  CAS  Google Scholar 

  27. M. Hilaire, C. Marteau and R. Tobazeon, IEEE Trans. Electr. Insul, EI-23, pp 779–787 (1988).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Atten, P., Foulc, J.N., Benqassmi, H. (1995). High Field Conduction of Liquids in Contact with Polymeric Material with Reference to Electrorheological Fluids. In: Havelka, K.O., Filisko, F.E. (eds) Progress in Electrorheology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1036-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1036-3_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1038-7

  • Online ISBN: 978-1-4899-1036-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics