Advertisement

ER-Fluids Based on Polyurethane Dispersions: Structure and Properties

  • Robert Bloodworth
  • Eckhard Wendt

Abstract

This paper describes the structure and properties of a new class of electrorheological fluids based on non-aqueous polyurethane dispersions. The fluids exhibit an attractive combination of properties: low viscosity, high ER effect, and low conductivity. The dispersed phase consists of a specially developed polyurethane elastomer which solvates and stabilizes metal salts. The polymer network density influences the mobility of the dissolved ions, allowing a surprising degree of control over the ER effect. Properties such as the field strength dependence of the ER-effect, switching response, and conductivity of these fluids correlate directly with changes in the polymer structure. Electrorheological measurements in a couette viscometer (shear-mode) and in a model shock absorber (flow-mode) using a commercial polyurethane-based fluid show that the ER effect is also dependent upon the shearing geometry. The implications of these results for the design and application of ER-fluids are discussed.

Keywords

Shear Rate Crosslink Density Shock Absorber Electrorheological Fluid Polyurethane Dispersion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Klass, L. D., Martinek, Th. W., J. Appl. Phys., 38(1):67 (1966).CrossRefGoogle Scholar
  2. 2.
    Winslow, W. M., J. Appl. Phys., 20(0):1137 (1949).CrossRefGoogle Scholar
  3. 3.
    DE 3427499, DE 3517281, DE 3536934.Google Scholar
  4. 4.
    UK 1570234.Google Scholar
  5. 5.
    JP 1253110.Google Scholar
  6. 6.
    EP 374525.Google Scholar
  7. 7.
    JP 3074494.Google Scholar
  8. 8.
    EP 509571.Google Scholar
  9. 9.
    US 4,744,914.Google Scholar
  10. 10.
    US 5,139,690.Google Scholar
  11. 11.
    US 5,139,691.Google Scholar
  12. 12.
    US 5,139,692.Google Scholar
  13. 13.
    Block, H., Kelly, J. P., Watson, T., Spec. Publ. — R. Soc. Chem. 87:51 (1991).Google Scholar
  14. 14.
    Bloodworth, R., Electrorheological fluids based on polyurethane dispersions, in: Electrorheological Fluids, Mechanisms, Properties, Technology and Applications, R. Tao and G.D. Roy, ed., World Scientific, Singapore (1994).Google Scholar
  15. 15.
    S. Okamura and Y. Chatini, Polymer Preprints Japan, 34:2089 (1985).Google Scholar
  16. 16.
    Wright, Perter V., J. Makromol. Sci. Chem., A26(2–3):519 (1989)Google Scholar
  17. 17.
    DE 4026881, US 5,268,118.Google Scholar
  18. 18.
    Wendt, E. and Büsing, K.W., Proc. Actuator’ 94, Bremen, Germany, in press.Google Scholar
  19. 19.
    Block, H., Kelly, J.P., Quin, A., Watson, T., Langmuir, 6(1):6 (1990).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Robert Bloodworth
    • 1
  • Eckhard Wendt
    • 1
  1. 1.Central Research and DevelopmentBayer AGLeverkusenGermany

Personalised recommendations