Advertisement

Identification and Characterization of Glycosylated Phenylthiohydantoin Amino Acids

  • Anthony Pisano
  • Nicolle H. Packer
  • John W. Redmond
  • Keith L. Williams
  • Andrew A. Gooley

Summary

The three major groups of glycosylated phenylthiohydantoin (PTH) derivatives Asn(Sac), Ser(Sac) and Thr(Sac), can be clearly resolved and separated from the other 20 commonly occurring PTH-amino acids using a new 5 mM triethylammonium formate (TEAF) buffer, pH 4.0 with an acetonitrile gradient. The glycosylated amino acids elute early in a 1·5 min “glycosylation window” between 6·5–8 min, while all the other PTH-amino acids elute between 8–15 min. This buffer system was developed principally for its ability to separate all PTH-amino acids and glycoamino acids at low ionic strength. The low buffer concentration is necessary to minimize glucose contamination for monosaccharide analysis of the PTH-glycoamino acids.

We demonstrate that: (a) a TEAF buffer system is compatible with monosaccharide analysis of the PTH-glycoamino acid and, in principle, the volatile nature of the buffer makes it suitable for ionspray mass spectrometric analysis of recovered PTH-glycoamino acids. (b) the “glycosylation window” is important for the detection of site-specific partial glycosylation and for identifying different forms of PTH-glycoamino acids.

Keywords

Dictyostelium Discoideum Edman Degradation Monosaccharide Analysis High Performance Anion Exchange Chromatography Terminal Galactose Residue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Carr, S. A., Huddleston, M. J. and Bean, M. F. (1993) Selective identification and differentiation of N-and 0-linked oligosaccharides in glycoproteins by liquid chromatography-mass spectrometry, Prot. Sci. 2: 183CrossRefGoogle Scholar
  2. Dong, D. L.-Y., Xu, Z-S., Chevrier, M. R., Cotter, R. J., Cleveland, D. W. and Hart, G. W. (1993) Glycosylation of mammalian neurofilaments: Localization of multiple 0-linked N-acetylglucosamine moieties on neurofilament polypeptide L and M, J. Biol. Chem. 268: 16679PubMedGoogle Scholar
  3. Dwek, R. A., Edge, C. J., Harvey, D. J., Wormald, M. R. and Parekh, R. B. (1993) Analysis of glycoproteinassociated oligosaccharides, Ann. Rev. Biochem. 62: 65PubMedCrossRefGoogle Scholar
  4. Gooley, A. A., Classon, B. J. Marschalek, R. and Williams K. L. (1991) Glycosylation sites identified by detection of glycosylated amino acids released from Edman degradation: The identification of Xaa-Pro-Xaa-Xaa as a motif for Thr-O-glycosylation, Biochem. Biophys. Res. Comm. 178: 1194Google Scholar
  5. Gooley, A. A., Packer, N. H., Pisano, A., Redmond, J. W., Alewood, P. F., Jones, A., Loughnan, M. and Williams, K. L. (1994a) Characterization of N-and 0-linked glycosylation sites using Edman degradation, Techniques in Protein Chemistry VI In PressGoogle Scholar
  6. Gooley, A. A., Pisano, A., Packer, N. H., Ball, M., Jones, A., Alewood, P. F., Redmond, J. W. and Williams, K. L. (1994b) Characterisation of a single glycosylated asparagine site on a glycopeptide using solid-phase Edman degradation, Glycoconjugate J. In PressGoogle Scholar
  7. Gooley, A. A. and Williams, K. L. (1994) Towards characterizing 0-glycans: the relative merits of in vivo and in vitro approaches in seeking peptide motifs specifying 0-glycosylation sites, Glycobiology 4: 413PubMedCrossRefGoogle Scholar
  8. Hart, G. W., Holt, G. D. and Haltiwanger, R. S. (1989) Glycosylation in the nucleaus and cytoplasm, Annu. Rev. Biochem. 58: 841PubMedCrossRefGoogle Scholar
  9. Haynes, P. A., Batley, M. Peach, R. J. and Brennan, S. O. (1992) Characterisation of oligosaccharides from a glycoprotein variant of human serum albumin (albumin Casebrook) using high performance anion exchange chromatography and nuclear magnetic resonance spectroscopy, J. Chromatogr. 581: 187PubMedGoogle Scholar
  10. Jackson, P (1991) Polyacrylamide gel electrophoresis of reducing saccharide label with the fluorophore 2-aminoacridone: subpicomolar detection using an imaging system based on a cooled charge-coupled device, Anal. Biochem. 196: 238PubMedCrossRefGoogle Scholar
  11. Ku, N-O., Omary, M. B. (1994) Expression, glycosylation, and phosphorylation of human keratins 8 and 18 in insect cells Exp. Cell Res., 211: 24PubMedCrossRefGoogle Scholar
  12. Laursen, R. A., Lee, T. T., Dixon, J. D. and Liang, S-P. (1991) Extending the performance of the solid-phase protein sequenater in: Methods in Protein Sequence Analysis, (Eds) Jornall, H., Hoog, J-0. and Gustvasson, A-M., Bikhauser Verlag, Switzerland, pp 47–54Google Scholar
  13. Liang, S-P. and Laursen, R. A. (1990) Covalent immobilization of proteins and peptides for solid-phase sequencing using prepacked capillary columns. Anal. Biochem. 188: 366PubMedCrossRefGoogle Scholar
  14. Mallett, S and Barclay, A. N. (1991) A new superfamily of cell surface proteins related to the nerve growth factor. Immunol. Today 12: 220PubMedCrossRefGoogle Scholar
  15. Meyer, H. E., Eisermann, B., Heber, M., Hoffmann-Posorske, E., Korte, H., Weigt, C., Wegner, A., Hutton, T., Donella-Deana, A. and Perich, J. W. (1993) Strategies for nonradioactive methods in the localisation of phosphorylated amino acids in proteins, FASEB J. 7: 776PubMedGoogle Scholar
  16. Pisano, A., Packer, H. N., Redmond, J. W., Williams, K. L. and Gooley, A. A. (1994) Characterisation of linked glycosylation motifs in the glycopeptide domain of bovine x-casein, Glycobiology In Press.Google Scholar
  17. Pisano, A., Redmond, J. W., Williams, K. L. and Gooley, A. A. (1993) Glycosylation sites identified by solid-phase Edman degradation: 0-linked glycosylation motifs on human glycophorin A, Glycobiology 3: 429PubMedCrossRefGoogle Scholar
  18. Strydom, D. J. (1994) On-line separation of phenylthiohydantoin derivatives of hydrophilic modified amino acids during sequencing, J. Chromatogr. 664: 227Google Scholar
  19. Tarr, G. E. (1986) Manual Edman sequencing system, in: Methods of Protein Microcharacterization, (Ed) Shively, J. E., Humana Press, Clifton, New Jersey, pp 162–163Google Scholar
  20. Townsend, R. R., and Hardy, M. R. (1991) Analysis of glycoprotein oligosaccharides using high-pH anion exchange chromatography, Glycobiology 1: 139PubMedCrossRefGoogle Scholar
  21. Townsend, R. R., Hardy, M. R. and Lee, Y. C. (1989) Separation of oligosaccharides using high performance anion exchange chromatography with pulsed amperometric detection, Methods Enzymol. 179: 65PubMedCrossRefGoogle Scholar
  22. Williams, A. F. and Barclay, A. N. (1988) The immunoglobulin superfamily domains for cell surface recognition, Ann. Rev. Immunol. 6: 381CrossRefGoogle Scholar
  23. Zhou-Chou, T., Slade, M. B., Williams, K. L. and Gooley, A. A. (1994) Expression, purification and characterisation of secreted recombinant glycoprotein PsA in Dictyostelium discoideum,(J Biotech.,In Press)Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Anthony Pisano
    • 1
  • Nicolle H. Packer
    • 1
  • John W. Redmond
    • 1
  • Keith L. Williams
    • 1
  • Andrew A. Gooley
    • 1
  1. 1.Macquarie University Centre for Analytical Biotechnology (MUCAB)Macquarie UniversitySydneyAustralia

Personalised recommendations