Advertisement

Theoretical Studies of Protein Folding

  • Harold A. Scheraga
  • Ming-Hong Hao
  • Jaroslaw Kostrowicki

Abstract

This paper summarizes some fundamental statistical mechanical aspects of protein folding and the prediction of protein structure. In order to predict the native structure of a protein, it is necessary to understand the physical conditions that determine its unique and thermodynamically-stable native structure, and to surmount the numerous local energy minima to arrive at the native structure. A statistical mechanical approach has been used to address the problem of foldability of polypeptides, and global minimization techniques have been developed to solve the multiple-minima problem. Some recent progress in these areas, made in our laboratory, is described.

Keywords

Global Minimum Diffusion Equation Conformational Energy Folding Transition Statistical Mechanical Approach 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bryngelson, J. D. and Wolynes, P. G. (1987) Proc. Natl. Acad. Sci. U.S.A. 84, 7524–7528.PubMedCrossRefGoogle Scholar
  2. Bryngelson, J. D. and Wolynes, P. G. (1989) J. Phys. Chem. 93, 6902–6915.CrossRefGoogle Scholar
  3. Bryngelson, J. D., Onuchic, J. N., Socci, N. D. and Wolynes, P. G. (1995) Proteins: Structure, Function and Genetics 21, 167–195.CrossRefGoogle Scholar
  4. Camacho, C. J. and Thirumalai, D. (1993) Proc. Natl. Acad. Sci. U.S.A. 90, 6369–6372.PubMedCrossRefGoogle Scholar
  5. Covell, D. G. and Jernigan, R. L. (1990) Biochemistry 29, 3287–3294.PubMedCrossRefGoogle Scholar
  6. Dill, K. A. (1985) Biochemistry 24, 1501–1509.PubMedCrossRefGoogle Scholar
  7. Dill, K. A., Alonso, D. O. V., and Hutchinson, K. (1989) Biochemistry 28, 5439–5449.PubMedCrossRefGoogle Scholar
  8. Fukugita, M., Lancaster, D. and Mitchard, M. G. (1993) Proc. Natl. Acad. Sci. U.S.A. 90, 6365–6368.PubMedCrossRefGoogle Scholar
  9. Gibson, K. D. and Scheraga, H. A. (1988) in “Structure & Expression: Vol. 1: From Proteins to Ribosomes”, Eds. R.H. Sarma & M.H. Sarma, Adenine Press, Guilderland, N.Y., p. 67–94.Google Scholar
  10. Gô, N and Scheraga, H. A. (1969) J. Chem. Phys. 51, 4751–4767.Google Scholar
  11. Go, N. and Scheraga, H. A. (1976) Macromolecules 9, 535–542.CrossRefGoogle Scholar
  12. Goldstein, R. A., Luthey-Schulten, Z. A., and Wolynes, P. G. (1992a) Proc. Natl. Acad. Sci. U.S.A. 89, 4918–4922.PubMedCrossRefGoogle Scholar
  13. Goldstein, R. A., Luthey-Schulten, Z. A., and Wolynes, P. G. (1992b) Proc. Natl. Acad. Sci. U.S.A. 89, 9029–9033.PubMedCrossRefGoogle Scholar
  14. Hao, M.-H. and Scheraga, H. A. (1994a) J. Phys. Chem. 98, 4940–4948.CrossRefGoogle Scholar
  15. Hao, M.-H. and Scheraga, H. A. (1994b)J. Phys. Chem., 98, 9882–9893.Google Scholar
  16. Hao, M.-H. and Scheraga, H. A. (1995)J. Chem. Phys., 102, 1334–1348.Google Scholar
  17. Honeycutt, J. D. and Thirumalai, D. (1990) Proc. Natl. Acad. Sci. U.S.A. 87, 3526–3529.PubMedCrossRefGoogle Scholar
  18. Kolinski, A. and Skolnick, J. (1992) J. Chem. Phys. 97, 9412–9426.Google Scholar
  19. Kostrowicki, J., Piela, L., Cherayil, B. J. and Scheraga, H. A. (1991) J. Phys. Chem. 95, 4113–4119.CrossRefGoogle Scholar
  20. Kostrowicki, J. and Scheraga, H. A. (1992) J. Phys. Chem. 96, 7442–7449.CrossRefGoogle Scholar
  21. Kostrowicki, J., Oberlin, D. M. and Scheraga, H. A. (1995) to be submitted.Google Scholar
  22. Kostrowicki, J. and Scheraga, H. A. (1995) Computational Polymer Science, 5, 47–55.Google Scholar
  23. Lee, J. (1993) Phys. Rev. Let. 71, 211–214.CrossRefGoogle Scholar
  24. Leopold, P. E., Montai, M. and Onuchic, J. N. (1992) Proc. Natl. Acad. Sci. U.S.A. 89, 8721–8725.PubMedCrossRefGoogle Scholar
  25. Piela, L., Kostrowicki, J. and Scheraga, H. A. (1989) J. Phys. Chem. 93, 3339–3346.CrossRefGoogle Scholar
  26. Sali, A., Shakhnovich, E. I., and Karplus, M. (1994) Nature 369, 248–251.PubMedCrossRefGoogle Scholar
  27. Scheraga, H. A. (1968) Adv. Phys. Org . Chem. 6 103–184.Google Scholar
  28. Scheraga, H. A. (1992) in Reviews in Computational Chemistry, Vol. 3, Eds. Lipkowitz, K. B. and Boyd, D. B., VCH Publ., New York, pp. 73–142.Google Scholar
  29. Shakhnovich, E., Farztdinov, G., Gutin, A. M. and Karplus, M. (1991) Phys. Rev. Lett 67, 1665–1669. Shakhnovich, E. I. and Finkelstein, A. V. (1989) Biopolymers 28, 1667–1680.Google Scholar
  30. Shakhnovich, E. I. and Gutin, A. M. (1989) Biophys. Chem. 34, 187–199.PubMedCrossRefGoogle Scholar
  31. Shakhnovich, E. I. and Gutin, A. M. (1990) Nature 346, 773–775.PubMedCrossRefGoogle Scholar
  32. Shakhnovich, E. I. and Gutin, A. M. (1993) Proc. Natl. Acad. Sci. U.S.A. 90, 7195–7199.PubMedCrossRefGoogle Scholar
  33. Skolnick, J. and Kolinski, A. (1990) Science 250, 1121–1125.PubMedCrossRefGoogle Scholar
  34. Skolnick, J. and Kolinski, A. (1991) J. Mol. Biol. 221, 499–531.PubMedCrossRefGoogle Scholar
  35. Taketomi, H. Ueda, Y. and Go, N. (1975) Int. J. Peptide Protein Res. 7, 445–459.CrossRefGoogle Scholar
  36. Vasquez, M., Némethy, G. and Scheraga, H. A. (1994) Chem. Revs., 94, 2183–2239.CrossRefGoogle Scholar
  37. Wawak, R. J., Wimmer, M. M. and Scheraga, H. A. (1992) J. Phys. Chem. 96 5138–5145.CrossRefGoogle Scholar
  38. Yue, K. and Dill, K. A. (1994) Phys. Rev. E. 48, 2267–2278.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Harold A. Scheraga
    • 1
  • Ming-Hong Hao
    • 1
  • Jaroslaw Kostrowicki
    • 1
  1. 1.Baker Laboratory of ChemistryCornell UniversityIthacaUSA

Personalised recommendations