Microsequencing of Proteins of the Rough Endoplasmic Reticulum (rER) Membrane

  • Regine Kraft
  • Susanne Kostka
  • Enno Hartmann


The ER membrane is an important organelle involved in such diverse functions as protein translocation, protein folding and phospholipid biosynthesis. It is the entry point for most membrane and soluble proteins into the secretory pathway. Most proteins destined for translocation into the ER contain a signal sequence at their N-terminus consisting of basic amino acids followed by a stretch of hydrophobic amino acids. The SRP (signal-recognition particle) binds to the signal sequence of a nascent secretory protein that is bound to a ribosome. The ribosome-SRP complex is then bound to its receptor (DP, docking protein) in the ER membrane. After release of SRP, the nascent proteins are inserted into the membrane or trans located into the lumen of the ER (Walter and Lingappa, 1986; Rapoport, 1992) by means of a number of membrane proteins like TRAMp and the Sec6l p complex. In the lumen of the ER, the synthesized polypeptide may undergo ER-specific cotranslational and post-translational modifications such as cleavage of the signal peptide, disulfide bond formation, N-linked glycosylation, fatty acylation, or prolyl hydroxylation. Thus, a multitude of functions are carried out by ER proteins which either integrate into the membrane or are located in the lumen. Up to now none of these functions is completely understood because not all proteins involved in these processes have been identified.


Protein Disulfide Isomerase Protein Translocation Spot Number Phospholipid Biosynthesis FASTA Computer Program 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aebersold, R.H., Leavitt, J., Saavedra, R.A., Hood, L.E. and Kent, S.B.H., 1987, Internal amino acid sequence analysis of proteins separated by one or two dimensional gel electrophoresis after in situ protease digestion on nitrocellulose, Proc. Natl. Acad. Sci. USA 84: 6970.PubMedCrossRefGoogle Scholar
  2. Baker, C.S., Corbett, J.M., May, A.J., Yacoub, M.H. and Dunn, M.J., 1992, A human myocardial two-dimensional electrophoresis database: Protein characterization by microsequencing and immunoblotting, Electrophoresis 13: 723.PubMedCrossRefGoogle Scholar
  3. Bordier, C., 1981, Phase separation of integral membrane proteins in Triton X-114 solution, J. Biol. Chem. 256: 1604.PubMedGoogle Scholar
  4. Celis, J.E., Rasmussen, H.-H., Leffers, H., Madsen, P., Honore’, B., Gesser, B., Dejgaard, K. and Vandekerckhove, J., 1991, Human cellular protein pattern and their link to genome DNA sequence data: usefulness of two-dimensional gel electrophoresis and microsequencing, FASEB J. 5: 2200.PubMedGoogle Scholar
  5. O’Farrel, P., 1975, High resolution two-dimensional electrophoresis of proteins, J. Biol. Chem. 250: 4007.Google Scholar
  6. Fiedler, K., Parton, R.G., Kellner, R., Etzold, T. and Simons, K., 1994, VIP36, a novel component of glycolipid rafts and exocytic carrier vesicles in epithelial cells, EMBO J. 13: 1729.PubMedGoogle Scholar
  7. Freedman, R B, 1989, Protein disulfide isomerase: Multiple roles in the modification of nascent secretory proteins, Cell 57: 1069.PubMedCrossRefGoogle Scholar
  8. Görlich, D., Prehn, S., Hartmann, E., Herz, J., Otto, A., Kraft, R., Wiedmann, M, Knespel, S., Dobberstein, B. and Rapoport, T.A., 1990, The signal sequence receptor has a second subunit and is part of a translocation complex in the endoplasmic reticulum as probed by bifunctional reagents, J. Cell Biol. 111: 2283.PubMedCrossRefGoogle Scholar
  9. Hartmann, E., Görlich, D., Kostka, S., Otto, A., Kraft, R., Knespel, S., Bürger, E., Rapoport, T.A. and Prehn, S., 1993, A tetrameric complex of membrane proteins in the endoplasmic reticulum, Eur. J. Biochem. 214: 375.PubMedCrossRefGoogle Scholar
  10. Hjelmeland, L., 1990, Solubilization of native membrane proteins, in: Methods in Enzymology 182: 253.Google Scholar
  11. Hughes, G.J., Frutiger, S., Paquet, N., Ravier, F., Pasquali, Ch., Sanchez, J.-Ch., James, R., Tissot, J.-D., Bjellqvist, B. and Hochstrasser, D.F., 1992, Plasma protein map: An update by microsequencing, Electrophoresis 13: 707.PubMedCrossRefGoogle Scholar
  12. Hurtley, S.M. and Helenius, A., 1989, Protein oligomerization in the endoplasmic reticulum, Annu. Rev. Cell Biol. 5: 277.PubMedCrossRefGoogle Scholar
  13. Jungblut, P., and Seifert, R., 1990, Analysis by high-resolution two-dimensional electrophoresis of differentiation-dependent alterations in cytosolic protein pattern of HL-60 leukemic cells, J. Biochem. Biophys. Meth. 21: 47.PubMedCrossRefGoogle Scholar
  14. Jungnickel, B., Rapoport, T.A. and Hartmann, E., 1994, Minireview, Protein translocation: common themes from bacteria to man, FEBS Lett. 346: 73.PubMedCrossRefGoogle Scholar
  15. Klose, J., 1983, High resolution of complex protein solutions by two-dimensional electrophoresis, in: Tschesche, H., ed., Modern Methods in Protein Chemistry–Review Articles, Walter de Gruyter, Berlin, pp. 49–78.Google Scholar
  16. Laemmli, U., 1970, Nature (London) 277:580.Google Scholar
  17. Matsudaira, P.J., 1987, Sequence from picomole quantities of proteins electroblotted onto polyvinylidene difluoride membranes, J. Biol. Chem. 262: 10035.PubMedGoogle Scholar
  18. Mickel, F.S., Weidenbach, F., Swarovsky, B.,LaForge, K.S. and Scheele, G.A., 1989, Structure of the canine pancreatic lipase gene, J. Biol. Chem. 264: 1 2895.Google Scholar
  19. Mobbs, C.V., Fink, G. and Pfaff, D.W., 1990, HIP-70: a protein induced by estrogen in the brain and LH-RH in the pituitary, Science 247: 1477.PubMedCrossRefGoogle Scholar
  20. Munro, S. and Pelham, H R B, 1986, An Hsp70-like protein in the ER: identity with the 78kd glucose-regulated protein and immunoglobulin heavy chain binding protein, Cell 46: 291.PubMedCrossRefGoogle Scholar
  21. Rapoport, T.A., 1992a, Transport of proteins across the endoplasmic reticulum membrane, Science 258: 931.PubMedCrossRefGoogle Scholar
  22. Rapoport, T.A., Görlich, D., Müsch, A., Hartmann, E., Prehn, S., Wiedmann, M., Otto, A., Kostka, S. and Kraft, R., 1992b, Components and mechanism of protein translocation across the ER membrane, Antonie van Leewenhoek 61b: 119.CrossRefGoogle Scholar
  23. Rasmussen, H.-H., Van Damme, J., Bauw, G., Puype, M., Gesser, B., Celis, J. and Vandekerckhove, J., 1991, Protein-electroblotting and microsequencing in establishing integrated human protein databases, in: Jörnvall, H., Höög, J.-O. and Gustayson, A.-M., eds., Methods in Protein Sequence Analysis, Birkhauser Verlag, Basel, pp. 103–114.Google Scholar
  24. Sanders, J., Maasen, J.A., Amons, R. and Moeller, W., 1991, Nucleotide sequence of human elongation factor-1-beta cDNA, Nucleic Acids Res. 19: 4551.PubMedCrossRefGoogle Scholar
  25. Sudhof, T.C., D’Camilli, P., Niemann, H. and Jahn, R., 1993, Membrane fusion machinery: insights from synaptic proteins, Cell 75: 1.PubMedGoogle Scholar
  26. Vandekerckhove, J., Bauw, G., Puype, M., Van Damme, J. and Van Montagu, M., 1985, Proteinblotting on Polybrene-coated glass-fiber sheets. A basis for acid hydrolysis and gas-phase sequencing of picomole quantities of protein previously separated on sodium dodecyl sulfate/polyacrylamide gel, Eur. J. Biochem. 152: 9.PubMedCrossRefGoogle Scholar
  27. Walter, P. and Blobel, G.,1983, Preparation of microsomal membranes for cotranslational protein translocation, Methods Enzymol. 96: 557.Google Scholar
  28. Walter, P., and Lingappa, V.R., 1986, Mechanism of protein translocation across the endoplasmatic reticulum membrane, Annu. Rev. Cell Biol. 2: 499.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Regine Kraft
    • 1
    • 2
  • Susanne Kostka
    • 1
    • 2
  • Enno Hartmann
    • 1
  1. 1.Max-Delbrück-Center for Molecular MedicineBerlin-BuchGermany
  2. 2.Humboldt UniversityBerlinGermany

Personalised recommendations