The Human DNA-Activated Protein Kinase, DNA-PK: Substrate Specificity

  • Carl W. Anderson
  • Margery A. Connelly
  • Susan P. Lees-Miller
  • Lauri G. Lintott
  • Hong Zhang
  • John D. Sipley
  • Kazuyasu Sakaguchi
  • E. Appella


Agents that cause damage to DNA (DNA damage-inducing (DDI) agents) arrest cell cycle progression in all eukaryotes from yeast to humans at positions in late G1 and G2 that have become known as “checkpoints” (Hartwell and Weinert, 1989; Murray, 1992; Sheldrick and Carr, 1993; Weinert and Lydall, 1993), presumably to allow time for DNA repair. Otherwise the DNA damage would become irreversibly fixed as a consequence of DNA replication in S phase, or through cell division at mitosis (M phase). The mammalian G2 checkpoint mechanism is not yet well characterized (O’Connor and Kohn, 1992), but the key observation that tumor cells with mutant p53 were unable to arrest in G1 (Kastan et al., 1991) quickly led to an outline of the mammalian G1 checkpoint mechanism (Hunter, 1993; Appella and Anderson, 1994; Appella et al., this volume). The p53 tumor suppressor gene is a transcription factor that normally is relatively inactive because it is rapidly degraded (Levine, 1993). However, in response to exposure to ultraviolet light, ionizing radiation, and other DDI agents, the p53 protein is transiently stabilized, accumulates in the cell nucleus, and induces the expression of several genes including WAF1 and GADD45 (El-Deiry et al., 1993; El-Deiry et al., 1994). The 21 kDa product of WAF1 is a potent inhibitor of the cyclin-dependent protein kinases that are needed for the transition from G1 to S phase and for continued DNA replication in S (Dulie et al., 1994; Harper et al., 1993). Although the G1 checkpoint mechanism probably is much more complex, the induction of WAF1 provides a simple explanation of how cell cycle progression can be arrested. In addition to WAF1, about 50 other genes are known to be induced in mammalian cells after exposure to DDI agents (Fornace, 1992; Herrlich and Rahmsdorf, 1994). Recent studies indicate that some genes are induced as a consequence of the effects of DDI agents on other cellular molecules and not necessarily as a consequence of damage to DNA (Anderson, 1994; Herrlich, and Rahmsdorf, 1994; Sachsenmaier et al., 1994). Such exposures activate cytoplasmic signaling mechanisms that operate through protein kinase cascades initiated at or near the plasma membrane; in turn, these kinase cascades activate several transcription factors including AP1 and NF-κB. Nevertheless, there is strong evidence that the p53-dependent induction of WAF1 is a direct consequence of the production of DNA strand breaks (Nelson and Kastan, 1994) and that DNA strand breaks are the signals for activation of the G1 checkpoint(s) in yeast (Siede et al., 1994).


Peptide Substrate Serum Response Factor Peptide Phosphorylation Arrest Cell Cycle Progression 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen, J. B., Zhou, Z., Siede, W., Friedberg, E. C. and Elledge, S. J., 1994 The SAD1/RAD53 protein kinase controls multiple checkpoints nad DNA damage induced transcription in yeast Genes Dev. 8:2416.CrossRefGoogle Scholar
  2. An, S., Chen, Y., Wu, W. and Wu, J. M., 1994 Demonstration of a double-stranded DNA-stimulated protein kinase (DNA-PK) inhibitory activity in human HL-60 leukemia cells. Biochem. Biophys. Res. Comm. 202: 1530.PubMedCrossRefGoogle Scholar
  3. Anderson, C. W., 1993 DNA damage and the DNA-activated protein kinase. Trends Biochem. Sci. 18: 433.PubMedCrossRefGoogle Scholar
  4. Anderson, C. W., 1994 Protein kinases and the response to DNA damage. Semin. Cell Biol. (in press). Anderson, C. W. and Lees-Miller, S. P., 1992 The human DNA- activated protein kinase, DNA-PK. Crit. Rev.Eukaryotic Gene Express. 2:283.Google Scholar
  5. Andreassen, P. R. and Margolis, R. L., 1992 2-Aminopurine overrides multiple cell cycle checkpoints in BHK cells. Proc. Natl. Acad. Sci. USA 89: 2272.Google Scholar
  6. Appella, E. and Anderson, C. W., 1994 Tumor suppressor protein p53: Response to DNA damage, cell cycle control, and mechanisms of inactivation in cancer. Biochemica in Italia 1:19.Google Scholar
  7. Appella, E., Sakaguchi, K., Sakamoto, H., Lewis, M. S., Omichinski, G. J, Gronenborn, A. M., Clore, G. M. and Anderson, C. W. 1994 The p53 tumor suppressor protein: biophysical characterization of the carboxy-terminal oligomerization domain. in: Methods in Protein Structure Analysis - 1994, Atassi, M. Z., ed., Plenum Press, New York (NB: p 407 ).Google Scholar
  8. Bannister, A. J., Gottlieb, T. M., Kouzarides, T. and Jackson, S. P., 1993 c-Jun is phosphorylated by the DNA-dependent protein kinase in vitro; definition of the minimal kinase recognition motif. Nucleic Acids Res. 21: 1289.Google Scholar
  9. Blier, P. R., Griffith, A. J., Craft, J. and Hardin, J. A. 1993 Binding of Ku protein to DNA. Measurement of affinity for ends and demonstration of binding to nicks. J. Biol. Chem. 268: 7594.PubMedGoogle Scholar
  10. Cai, Q.-Q., Plet, A., Imbert, J., Lafage-Pochitaloff, M., Cerdan, C. and Blanchard, J.-M., 1994 Chromosomal location and expression of the genes coding for Ku p70 and p80 in human cell lines and normal tissues. Cyto$enet. Cell Genet. 65: 221.CrossRefGoogle Scholar
  11. Carter, T., Vancurova, I., Sun, I., Lou, W. and DeLeon, S., 1990 A DNA-activated protein kinase from HeLa cell nuclei. Mol. Cell. Biol. 10: 6460.PubMedGoogle Scholar
  12. Chan, J. Y. C., Lerman, M. I., Prabhakar, B. S., Isozaki, O., Santisteban, P., Notkins, A. L. and Kohn, L. D., 1988 Cloning and characterization of a cDNA that encodes a 70-kDa novel human thyroid autoantigen. J. Biol. Chem. 264: 3651.Google Scholar
  13. Chen, Y-R., Lees-Miller, S. P., Tegtmeyer, P. and Anderson, C. W., 1991 The human DNA-activated protein kinase phosphorylates SV40 T-antigen at amino-and carboxy-terminal sites. J. Virol. 10: 5131.Google Scholar
  14. Murcia, G. and de Murcia, J. M., 1994 Poly(ADP-ribose) polymerase: a molecular nick-sensor. Trends Biochem. Sci. 19: 172.CrossRefGoogle Scholar
  15. Vries, E., van Driel, W., Bergsma, W. G., Amberg, A. C. and van der Vliet, P. C., 1989 HeLa nuclear protein recognizing DNA termini and translocating on DNA forming a regular DNA-multimeric protein complex. J. Mol. Biol. 208: 65.PubMedCrossRefGoogle Scholar
  16. Dahmus, M. E. and Dynan, W. S., 1992 Phosphorylation of RNA polymerase II as a transcriptional regulatory mechanism, in: Transcriptional Regulation, McKnight, S. L. and Yamamoto, K. R., eds., Cold Spring Harbor Laboratory Press, NY, pp. 109–128.Google Scholar
  17. Dvir, A., Peterson, S. R., Knuth, M. K., Lu, H. and Dynan, W. S., 1992 Ku autoantigen is the regulatory component of a template-associated protein kinase that phosphorylates RNA polymerase II. Proc. Natl. Acad. Sci. USA 89: 1 1920.Google Scholar
  18. Dvir, A., Stein, L. Y., Calore, B. L. and Dynan, W. S., 1993 Purification and characterization of a template-as- sociated protein kinase that phosphorylates RNA polymerase II. J. Biol. Chem. 268: 10440.PubMedGoogle Scholar
  19. Dulic, V., Kaufmann, W. K., Wilson, S. J., Tisty, T. D., Lees, E., Harper, J. W., Elledge, S. J. and Reed, S. I., 1994 p53- dependent inhibition of cyclin-dependent kinase activities in human fibroblasts during radiation-induced GI arrest. Cell 76: 1013.Google Scholar
  20. El-Deiry, W. S., Tokino, T., Velculescu, V. E., Levy, D. B., Parsons, R., Trent, J. M., Lin, D., Mercer, W. E., Kinzler, K. W. and Vogelstein, B., 1993 WAF], a potential mediator of p53 tumor suppression. Cell 75: 817.Google Scholar
  21. El-Deiry, W. S., Harper, J. W., O’Connor, P. M., Velculescu, V. E., Canman, C. E., Jackman, J., Pietenpol, J. A., Burrell, M., Hill, D. E., Wang, Y., Wiman, K. G., Mercer, W. E., Kastan, M. B., Kohn, K. W., Elledge, S. J., Kinzler, K. W. and Vogelstain B., 1994 WAF]/CIPI is induced in p53-mediated G1 arrest and apoptosis. Cancer Res. 54: 1169.Google Scholar
  22. Falzon, M. and Kuff, E. L., 1992 The nucleotide sequence of a mouse cDNA encoding the 80 kDa subunit of the Ku (p70/p80) autoantigen. Nucleic Acids. Res. 20: 3784.PubMedCrossRefGoogle Scholar
  23. Falzon, M., Fewell, J. W. and Kuff, E. L., 1993 EBP-80, a transcription factor closely resembling the human autoantigen Ku, recognizes single-to double-stranded transitions in DNA. J. Biol. Chem. 268: 10546.PubMedGoogle Scholar
  24. Fornace Jr., A. J., 1992 Mammalian genes induced by radiation; activation of genes associated with growth control. Annu. Rev. Genet. 26: 507.PubMedCrossRefGoogle Scholar
  25. Getts, R. C. and Stamato, T. D., 1994 Absence of a Ku-like DNA end binding activity in the xrs double-stranded DNA repair-deficient mutant. J. Biol. Chem. 269: 15981.PubMedGoogle Scholar
  26. Gottlieb, T. M. and Jackson, S. P., 1993 The DNA-dependent protein kinase: requirement for DNA ends and association with Ku antigen. Cell 72: 131.PubMedCrossRefGoogle Scholar
  27. Griffith, A. J., Craft, J., Evans, J., Minori, T. and Hardin, J. A., 1992 Nucleotide sequence and genomic structure analysis of the p70 subunit of the human Ku autoantigen: evidence for a family of genes encodeing Ku (p70)-related polypeptides. Mol. Biol. Rep. 16: 91.PubMedCrossRefGoogle Scholar
  28. Harper, J. W., Adami, G. R., Wei, N., Keyomarsi, K. and Elledge, S. J., 1993 The p21 Cdk-interacting protein Cipl is a potent inhibitor of G1 cyclin-dependent kinases. Cell 75:805.Google Scholar
  29. Hartwell, L. and Weinert, T. A., 1989 Checkpoints: controls that ensure the order of cell cycle events. Science 246: 629–634.PubMedCrossRefGoogle Scholar
  30. Herrlich, P. and Rahmsdorf, H. J., 1994 Transcriptional and post-transcriptional responses to DNA-damaging agents. Curr. Opin. Cell Biol. 6: 425.PubMedCrossRefGoogle Scholar
  31. Hunter, T., 1993 Braking the cycle. Cell 75: 839–841.PubMedCrossRefGoogle Scholar
  32. Jackson, S. P., MacDonald, J. J., Lees-Miller, S. and Tjian, R., 1990 GC box binding induces phosphorylation of Spl by a DNA- dependent protein kinase. Cell 63: 155.PubMedCrossRefGoogle Scholar
  33. Jackson, S., Gottlieb, T., and Hartley. K., 1993 Phosphorylation of transcription factor Spl by the DNA-dependent protein kinase. Adv. Second Messenger Phosphoprotein Res. 28: 279.PubMedGoogle Scholar
  34. Kastan, M. B., Onyekwere, O., Sidransky, D., Vogelstein, B. and Craig, R. W., 1991 Participation of p53 protein in cellular response to DNA damage. Cancer Res. 51: 6304.PubMedGoogle Scholar
  35. Kemp, B. E. and Pearson, R. B., 1991 Design and use of peptide substrates for protein kinases. Meth. Enzymol. 200: 121.PubMedCrossRefGoogle Scholar
  36. Lees-Miller, S. P. and Anderson, C. W., 1989a Two human 90-kDa heat shock proteins are phosphorylated in vivo at conserved serines that are phosphorylated in vitro by casein kinase II. J. Biol. Chem. 264: 2431.PubMedGoogle Scholar
  37. Lees-Miller, S. P. and Anderson. C. W., 1989b The human dsDNA- activated protein kinase phosphorylates the 90-kDa heat shock protein, hsp90a, at two N-terminal threonine residues. J. Biol. Chem. 264: 17275.PubMedGoogle Scholar
  38. Lees-Miller, S. P., Chen, Y-R. and Anderson, C. W., 1990 Human cells contain a DNA-activated protein kinase that phosphorylates simian virus 40 T antigen, mouse p53, and the human Ku autoantigen. Mol. Cell. Biol. 10: 6472.PubMedGoogle Scholar
  39. Lees-Miller, S. P., Sakaguchi, K., Ullrich, S., Appella, E., and Anderson, C. W., 1992 Human DNA-activated protein kinase phosphorylates serines 15 and 37 in the amino-terminal transactivation domain of human p53. Mol. Cell. Biol. 12: 5041.PubMedGoogle Scholar
  40. Levine, A. J., 1993 The tumor suppressor genes. Annu. Rev. Biochem. 62: 623.PubMedCrossRefGoogle Scholar
  41. Liu, S.-H., Ma, J.-T., Yueh, A. Y., Lees-Miller, S. P., Anderson, C. W. and Ng, S.-Y., 1993 The carboxy-terminal transcription activation domain of human serum response factor is phosphorylated by DNA-PK, the DNA-activated protein kinase. J Biol. Chem. 268: 21147.PubMedGoogle Scholar
  42. Luethy, J. D. and Holbrook, N. J., 1994 The pathway regulating GADD153 induction in response to DNA damage is independent of protein kinase C and tyrosine kinases. Cancer. Res. 54: 1902s.Google Scholar
  43. Mimori, T., Akizuki, M., Yamagata, H., Inada, S., Yoshida, S. and Homma, M., 1981 Characterization of a high molecular weight acidic nuclear protein recognized by antibodies in sera from patients with polymyositis-scleroderma overlap. J. Clin. Invest. 68: 611.PubMedCrossRefGoogle Scholar
  44. Mimori, T., Hardin, J. A. and Steitz, J. A., 1986 Characterization of the DNA-binding protein antigen Ku recognized by autoantibodies from patients with rheumatic disorders. J. Biol. Chem. 261: 2274.PubMedGoogle Scholar
  45. Mimori, T., Ohosone, Y., Hama, N., Suwa, A., Akizuka, M., Homma, M., Griffith, A. J. and Hardin, J. A., 1990 Isolation and characterization of cDNA encoding the 80-kDa subunit protein of the human autoantigen Ku (p70/p80) recognized by autoantibodies from patients with scleroderma-polymyositis overlap syndrome. Proc. Natl. Acad. Sci. USA 87: 1777.PubMedCrossRefGoogle Scholar
  46. Morozov, V. E., Falzon, M., Anderson, C. W. and Kuff, E. L., 1994 DNA-dependent protein kinase is activated by nicks and larger single-stranded gaps. J. Biol. Chem. 269: 16684.PubMedGoogle Scholar
  47. Murray, A. W., 1992 Creative blocks: cell-cycle checkpoints and feedback controls. Nature 359: 599.PubMedCrossRefGoogle Scholar
  48. Nelson, W. G. and Kastan, M. B., 1994 DNA strand breaks: the DNA template alterations that trigger p53-dependent DNA damage response pathways. Mol. Cell. Biol. 14: 1815.PubMedGoogle Scholar
  49. O’Brien, T., Hardin, S., Greenleaf, A. and Lis, J. T., 1994 Phosphorylation of RNA polymerase II C-terminal domain and transcriptional elongation. Nature 370: 75.PubMedCrossRefGoogle Scholar
  50. O’Connor, P. M. and Kohn, K. W., 1992 A fundamental role for cell cycle regulation in the chemosensitivity of cancer cells? Semin. Cell Biol. 3: 409.Google Scholar
  51. Porges, A. J., Ng, T. and Reeves, W. H., 1990 Antigenic determinants of the Ku (p70/p80) autoantibody are poorly conserved between species. J. Immunol. 145: 4222.PubMedGoogle Scholar
  52. Rathmell, W. K. and Chu, G., 1994a A DNA end-binding factor involved in double-strand break repair and V(D)J recombination. Mol. Cell. Biol. 14: 4741.PubMedGoogle Scholar
  53. Rathmell, W. K. and Chu, G., 1994b Involvement of the Ku autoantigen in the cellular response to DNA double-strand breaks. Proc. Natl. Acad. Sci. USA 91: 7623.PubMedCrossRefGoogle Scholar
  54. Reeves, W. H., 1992 Antibodies to the p70/p80 (Ku) antigens in systemic lupus erythematosus. Rheumatic Dis. Clinics of N. America 18: 391.Google Scholar
  55. Reeves, W. H. and Sthoeger, Z. M., 1989 Molecular cloning of cDNA encoding the p70 (Ku) lupus autoantigen. J. Biol. Chem. 264: 5047.Google Scholar
  56. Sachsenmaier, C., Radler-Pohl, A., Müller, A., Herrlich, P., and Rahmsdorf, H. J. 1994 Damage to DNA by UV light and activation of transcription factors. Biochem. Pharmacol. 47: 129.PubMedCrossRefGoogle Scholar
  57. Satoh, M. S. and Lindahl, T., 1992 Role of poly(ADP-ribose) formation in DNA repair. Nature 356:356. Sheldrick, K. S. and Carr, A. M., 1993 Feedback controls and G2 checkpoints: fission yeast as a model system. Bioessays 15:775.Google Scholar
  58. Siede, W., Friedberg, A. S., Dianova, I. and Frieberg, E. C., 1994 Characterization of GI checkpoint control in the yeast Saccharomyces cerevisiae following exposure to DNA-damaging agents. Genetics 138: 271.PubMedGoogle Scholar
  59. Taccioli, G. E., Gottlieb, T. M., Blunt, T., Priestley, A., Demengeot, J., Mizuta, R., Lehmann, A. R., Alt, F. W., Jackson, S. P. and Jeggo, P. A., 1994 Ku80: Product of the XRCC5 gene and its role in DNA repair and V(D)J recombination. Science 265: 1442.PubMedCrossRefGoogle Scholar
  60. Tuteja, N., Tuteja, R., Ochem, A., Taneja, P., Huang, N. W., Simoncsits, A., Susic, S., Rahman, K., Marusic, L., Chen, J., Zhang, J., Wang, S., Pongor, S. and Falaschi, A., 1994 Human DNA helicase II: a novel DNA unwinding enzyme identified as the Ku autoantigen. EMBO J. 13: 4991.Google Scholar
  61. Ullrich, S. J., Sakaguchi, K., Lees-Miller, S. P., Fiscella, M., Mercer, W. E., Anderson, C. W. and Appella, E., 1993 Phosphorylation at serine 15 and 392 in mutant p53s from human tumors is altered compared to wild-type p53. Proc. Natl. Acad. Sci. USA 90: 5954.PubMedCrossRefGoogle Scholar
  62. Walworth, N., Davey, S. and Beach, D., 1993 Fission yeast chkl protein kinase links the rad checkpoint pathway to cdc2. Nature 363: 368.PubMedCrossRefGoogle Scholar
  63. Wang, J., Chou, C.-H., Blankson, J., Satoh, M., Knuth, M. W., Eisenberg, R. A., Pisetsky, D. S. and Reeves, W. H., 1993 Murine monoclonal antibodies specific for conserved and non-conserved antigenic determinants of the human and murine Ku autoantigens. Mol. Biol. Rep. 18: 15.PubMedCrossRefGoogle Scholar
  64. Weinert, T. and Lydall, D., 1993 Cell cycle checkpoints, genetic instability and cancer. Semin. Cancer Biol. 4: 129.Google Scholar
  65. Weinert, T. A., Kiser, G. L. and Hartwell, L. H., 1994 Mitotic checkpoint genes in budding yeast and the dependence of mitosis on DNA replication and repair. Genes Dey. 8: 652.CrossRefGoogle Scholar
  66. Yaneva, M., Wen, J., Ayala, A. and Cook, R., 1989 cDNA-derived amino acid sequence of the 86-kDa subunit of the Ku antigen. J. Biol. Chem. 264: 13407.Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Carl W. Anderson
    • 1
  • Margery A. Connelly
    • 1
  • Susan P. Lees-Miller
    • 2
  • Lauri G. Lintott
    • 2
  • Hong Zhang
    • 1
  • John D. Sipley
    • 1
  • Kazuyasu Sakaguchi
    • 3
  • E. Appella
    • 3
  1. 1.Biology DepartmentBrookhaven National LaboratoryUptonUSA
  2. 2.Department of Biological SciencesUniversity of CalgaryN.W., CalgaryCanada
  3. 3.Laboratory of Cell BiologyNational Institutes of HealthBethesdaUSA

Personalised recommendations