High-Speed Chromatographic Separation of Proteins and Peptides for High Sensitivity Microsequence Analysis

  • Robert L. Moritz
  • James Eddes
  • Richard J. Simpson


Reversed-phase high-performance liquid chromatography (RP-HPLC) and polyacrylamide gel electrophoresis (PAGE) are two of the most widely-used high-resolution techniques for isolating proteins and peptides for structural analysis (Simpson et al., 1988, 1989; Matsudaira, 1993; Patterson, 1994). In recent years, the importance of these two technologies has been further enhanced by using them in tandem. For example, proteins from complex mixtures such as total cell lysates can be resolved by two-dimensional gel electrophoresis (2-DE) and, following proteolytic digestion, the generated peptides separated by microbore column RP-HPLC. Proteolytic digestion of 2-DE gel spots can be accomplished either in the gel matrix (Ward et al., 1990, Eckerskorn et al., 1990, Rosenfeld et al, 1992, Ji et al., 1994, and Hellman, U. personal communication) or on immobilizing membranes such as polyvinylidine difluoride (Fernandez et al., 1992) and nitrocellulose (Aebersold et al., 1987), following electrotransfer from the gel. Protein identification can be achieved by microsequence analysis of the isolated peptides using either automated Edman degradation or tandem mass spectrometry (Hunt et al., 1986; Burlingame et al., 1994). More recently, alternative means of protein identification such as peptide mass fingerprinting (Pappin et al., 1993; Mann et al., 1993; Henzel et al., 1993, James et al., 1994) and amino acid compositional analysis (Sibbald et al., 1991, Shaw, 1993) have emerged. Since these latter techniques have the potential for generating large quantities of data rapidly, there is now an increasing need for rapid protein and peptide isolation procedures.


Colorectal Cancer Cell Line Mass Transfer Kinetic Linear Flow Velocity Internal Amino Acid Sequence Chromatographic Efficiency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aebersold, R.H., Leavitt, J., Saavedra, R.A., Hood, L.E. and Kent, S.B. (1987) Internal amino acid sequence analysis of proteins separated by one-or two-dimensional gel electrophoresis after in situ protease digestion on nitrocellulose Proc. Natl. Acad. Sci. USA 84: 6970–6974.PubMedCrossRefGoogle Scholar
  2. Afeyan, N.B., Gordon, N.F., Mazsaroff, I., Varady, L., Fulton, S.P., Yang, Y.B. and Regnier, F.E., (1990) Flow-through particles for the high-performance liquid chromatographic separation of biomolecules: perfusion chromatography J. Chromatogr. 519, 1–29.PubMedCrossRefGoogle Scholar
  3. Boschetti, E., (1994) Advanced sorbents for preparative protein separation purposes J. Chromatogr. 658, 207–236.CrossRefGoogle Scholar
  4. Burlingame, A.L., Boyd, R.K. and Gaskell, S.J. (1994) Mass spectrometry Anal. Chem. 66: 634–683. Eckerskom, C., Strahler, S. and Lottspeich, F. (1990) in Two-dimensional electrophoresis (Endler, I. and Honash, S., Eds.), VCH, Weinheim.Google Scholar
  5. Esser, U and Unger, K.K. (1991) Reversed-phase packings for the separation of peptides and proteins by means of gradient elution high-performance liquid chromatography. in High-performance liquid chromatography of peptides and proteins: separation, analysis and confirmation (Mant, C.T. and Hodges, R.S.), CRC Press Inc, Florida.Google Scholar
  6. Fernandez, J., DeMott, M., Atherton, D. and Mische, S.M. (1992) Internal protein sequence analysis: Enzymic digestion for less than 10µg of protein bound to polyvinylidene difluoride or nitrocellulose membranes Anal. Biochem. 201: 255–264.PubMedCrossRefGoogle Scholar
  7. Fulton, S.P., Afeyan, N.B., Gordon, N.F. and Regnier, F.E. (1991) Very high speed separation of proteins with a 20-µm reversed-phase sorbent. J. Chromatogr. 547, 452–456.CrossRefGoogle Scholar
  8. Hellman, U., Wemstedt, C., Gonez, J. and Heldin, C-H. (1995) Improvements of an in-gel digestion procedure for the micropreparation of internal protein fragments for amino acid sequencing. Anal. Biochem. 224: 451–455.PubMedCrossRefGoogle Scholar
  9. Henzel, W.J., Billeci, T.M., Stults, J.T., Wong, S.C., Grimley, C. and Watanabe, C. (1993) Identifying proteins from two-dimensional gels by molecular mass searching of peptide fragments in protein sequence databases Proc. Natl. Acad. Sci. USA 90: 5011–5015.PubMedCrossRefGoogle Scholar
  10. Hunt, D.F., Yates, J.R., Shabanowitz, J., Winston, S. and Hauer, C. R. (1986) Protein sequencing by tandem mass spectrometry Proc. Natl. Acad. Sci. USA 83: 6233–6237.PubMedCrossRefGoogle Scholar
  11. James, P., Quadroni, M., Carafoli, E., Gonnet, G. (1994) Protein identification in DNA databases by peptide mass fingerprinting Protein Sci. 3, 1347–1350PubMedCrossRefGoogle Scholar
  12. Ji, H., Baldwin, G.S., Burgess, A.W., Moritz, R.L., Ward, L.D. and Simpson, R.J., (1993) Epidermal growth factor induces serine phosphorylation of stathmin in a human colon carcinoma cell line (LIM 1215), J. Biol. Chem. 286: 13396–13405.Google Scholar
  13. Ji, H., Whitehead, R.H., Reid, G.E., Moritz, R.L., Ward, L.D. and Simpson, R.J. (1994) Two-dimensional electrophoretic analysis of proteins expressed by normal and cancerous human crypts: Application of mass spectrometry to peptide-mass fingerprinting, Electrophoresis 15: 391–405.PubMedCrossRefGoogle Scholar
  14. Kalghatgi, K. and Horvath, C. (1987) Rapid analysis of proteins and peptides by reversed-phase chromatography J. Chromatogr. 398, 335–339.PubMedCrossRefGoogle Scholar
  15. Kalghatgi, K. and Horvath, C., (1988) Rapid peptide mapping by high-performance liquid chromatography J. Chromatogr. 443, 343–354.PubMedCrossRefGoogle Scholar
  16. Kassel, D.B., Shushan, B., Sakuma,T. and Salzman, J-P. (1994) Evaluation of packed capillary column HPLC/MS/MS for the rapid mapping and sequencing of enzymatic digests. Anal. Chem. 66: 236–243.CrossRefGoogle Scholar
  17. Mann, M., Hejrup, P., and Roepstorff, P. (1993) Use of mass spectrometric molecular weight information to identify proteins in sequence databases Biol. Mass Spec. 22, 338–345.CrossRefGoogle Scholar
  18. Matsudaira, P. (1993) A practical guide to protein and peptide purification for microsequencing, Academic Press, San Diego.Google Scholar
  19. Moritz, R.L. and Simpson, R.J. (1992a) Application of capillary reversed-phase high performance liquid chromatography to high-sensitivity protein sequence analysis J. Chromatogr. 599, 119–130.PubMedCrossRefGoogle Scholar
  20. Moritz, R.L. and Simpson, R.J. (1992b) Purification of proteins and peptides for sequnce analysis using microcolumn liquid chromatography J. Microcol. Sep. 4, 485–489CrossRefGoogle Scholar
  21. Moritz, R.L., Eddes, J., Ji, H., Reid, G.E. and Simpson, R.J. (1995) Rapid Separation of Proteins and Peptides using Conventional Silica-Based Supports: Identification of 2-D Gel Proteins Following In-Gel Proteolysis in Techniques in Protein Chemistry VI, (Crabb, J.W., ED.), Academic press, San Diego, pp. 311–322.Google Scholar
  22. Nice, E.C. and Simpson, R.J. (1989) Micropreparative high-performance liquid chromatography of proteins and peptides J. Phar. Biomed. Anal. 7; 9, 1039–1053.CrossRefGoogle Scholar
  23. Nugent, K.D. (1990) Ultrafast protein analysis: A powerful technique for recombinant protein process monitoring, In “Current Research in Protein Chemistry: Techniques, Structure and Function” (Villafranca, J.J., ed.) Academic Press, pp. 233–244.Google Scholar
  24. Pappin, D.J., Hajrup, P. and Bleasby, A.J. (1993) Rapid identification of proteins by peptide-mass finger printing Current Biology 3, 327–332.PubMedCrossRefGoogle Scholar
  25. Patterson, S. D. (1994) From electrophoretically separated protein to identification: strategies for sequence and mass analysis. Anal. Biochem. 221: 1–15.PubMedCrossRefGoogle Scholar
  26. Rosenfeld, J., Capdevielle, J., Guillemot, J.C. and Ferrara, P. (1992) In-gel digestion of proteins for internal sequence analysis after one-or two-dimensional gel electrophoresis. Anal. Biochem. 203: 173–179.PubMedCrossRefGoogle Scholar
  27. Rozing, G.P. and Goetz, H. (1989) Fast separation of biological macromolecules on non-porous, microparticu-late columns J. Chromatogr. 476, 3–19.PubMedCrossRefGoogle Scholar
  28. Shaw, G. (1993) Rapid identification of proteins Proc. Natl. Acad. Sci. U.S.A. 90, 5138–5142PubMedCrossRefGoogle Scholar
  29. Sibbald, P.R., Sommerfeldt, H. and Argos, P. (1991) Identification of proteins in sequence databases from amino acid composition data Anal. Biochem. 198, 330–333.PubMedCrossRefGoogle Scholar
  30. Simpson, R.J., Moritz, R.L., Rubira, M.R. and Van Snick, J., (1988) Murine hybridoma/plasmacytoma growth factor: Complete amino acid sequence and relation to human interleukin-6. Eur. J. Biochem. 176, 187–197.PubMedCrossRefGoogle Scholar
  31. Simpson, R.J., Moritz, R.L., Begg, G.S., Rubira, M.R., and Nice, E.C. (1989) Micropreparative procedures for high sensitivity sequencing of peptides and proteins. Anal. Biochem. 177, 221–226.PubMedCrossRefGoogle Scholar
  32. Snyder, L.R. and Kirkland, J.J. (1979) Introduction to Modern Liquid Chromatography. Wiley Interscience, New York.Google Scholar
  33. Stone, K. (1992) ABRF Workshop: Digestion of proteins from blots and gels ABRF News 3–3, 8–9.Google Scholar
  34. Unger, K.K., Jilge, G., Kinkel, J.N. and Hearn, M.T.W. (1986) Evaluation of advanced silica packings for the separation of biopolymers by high-performance liquid chromatography. II. Performance of non-porous monodisperse 1.5 pm silica beads in the separation of proteins by reversed-phase gradient elution high-performance liquid chromatogrraphy, J. Chromatogr. 359, 61–72.CrossRefGoogle Scholar
  35. Ward, L.D., Reid, G.E., Moritz, R.L. and Simpson, R.J. (1990a) Strategies for internal amino acid sequence analysis of proteins separated by polyacrlyamide gel electrophoresis. J. Chromatogr. 519: 199–216.PubMedCrossRefGoogle Scholar
  36. Ward, L.D., Reid, G.E., Moritz, R.L. and Simpson, R.J. (1990b) Peptide mapping and internal sequencing of proteins from acrylamide gels.. In “Current Research in Protein Chemistry: Techniques, Structure and Function” ( Villafranca, J.J., ed.) Academic Press, pp. 179–190.Google Scholar
  37. Ward, L.D., Ji, H., Whitehead, R.H. and Simpson, R.J., (1990c) Development of a database of amino acid sequences for human colon carcinoma proteins separated by two-dimensional polyacrylamide gel electrophoresis. Electrophoresis 11, 883–891.PubMedCrossRefGoogle Scholar
  38. Williams, K., Kobayashi, R., Lane, W. and Tempst, P. (1993) Internal amino acid sequencing: Observations from four different laboratories ABRF News 4–4, 7–12.Google Scholar
  39. Yamasaki, Y., Kitamura, T., Nakatani, S. and Kato, Y. (1989) Recovery of proteins and peptides with nanogram loads on non-porous packings. J. Chromatogr. 481, 391–396.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Robert L. Moritz
    • 1
  • James Eddes
    • 1
  • Richard J. Simpson
    • 1
  1. 1.Joint Protein Structure LaboratoryLudwig Institute for Cancer Research (Melbourne Branch) and The Walter and Eliza Hall Institute for Medical ResearchAustralia

Personalised recommendations