Advertisement

Immunological Approach to Study the Structure of Oxidized Low Density Lipoproteins

  • Chao-Yuh Yang
  • Natalia V. Valentinova
  • Manlan Yang
  • Zi-Wei Gu
  • John R. Guyton
  • Antonio M. GottoJr.

Abstract

Human low density lipoproteins (LDL), the major carriers of cholesterol in the bloodstream, plays the major role in supplying cells of tissues and organs with cholesterol. It is derived from the metabolism of the triglyceride-rich very low density lipoproteins (VLDL). Pathologic and epidemiologic studies have implicated that higher concentration of LDL in circulation is correlated with the development of atherosclerosis. Apolipoprotein (apo) B-100 serves as the ligand for the LDL receptor on cell surfaces. Thus, apoB-100 occupies a crucial position in the metabolic pathway of cholesterol and LDL. The complete primary structure of apoB-100 has been determined from its cDNA sequence (Chen et al., 1986; Knott,et al, 1986) and from its proteolytic peptide sequence information (Yang, et. al, 1986). ApoB-100 consists of 4536 amino acid residues with a calculated molecular mass of 513 kDa. Based on the differential trypsin releasibility of apoB-100 in LDL, apoB can be divided into 5 domains. Domain 1 contains 14 of the 25 cysteine (Cys) residues in apoB. Sixteen of the 25 Cys residues (which are numbered from 1 to 25 from the amino end to the carboxy end in apoB-100) exist in disulfide form. All 14 Cys residues in domain 1 are linked in disulfide form, and all except Cys 1-Cys3 and Cys2-Cys4 are linked to neighboring Cys. Domain 4 contains 7 of the 16 N-glycosylated carbohydrates (Yang et al., 1989). Based on the published structural information (Yang et al., 1990), we proposed that the structure of apoB-100 in LDL is likely to be an elongated form that wraps around the LDL molecule as shown in Fig. 1 (Yang et al., 1992). The process of atherogenesis is believed to involve transformation of macrophages to lipid-laden foam cells.

Keywords

Competitive ELISA Human Apolipoprotein Disulfide Form Immunological Approach Reduce Binding Affinity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chen, S.-H., Yang, C.-Y., Chen, P.-F., Setzer, D., Tanimura, M., Li, W.-H., Gotto, A.M., Jr., and Chan, L., 1986, The complete cDNA and amino acid sequence of human apolipoprotein B-100, J. Biol. Chem., 261: 12918.PubMedGoogle Scholar
  2. Fievet, C., Durieux, C., Milne, R., Delaunay, T., Agnani, G., Bazin, H, Marcie, Y., and Fruchart, J.C., 1989, Rat monoclonal antibodies to human apolipoprotein B: advantages and applications. J. Lipid Res. 30, 1015–1024PubMedGoogle Scholar
  3. Gandjini, H., Gambert, P., Athias, A., and Lallemant, C., 1991, Resistance to LDL oxidative modifications of an N-terminal apolipoprotein B epitope. Atherosclerosis 89, 83–93.PubMedCrossRefGoogle Scholar
  4. Goldstein, J.L., Ho, Y.K., Basu, S.K., and Brown, M.S., 1979, Binding site on macrophages that mediates uptake and degradation of acetylated low density lipoprotein, producing massive cholesterol deposition. Proc. Natl. Acad. Sci. USA 76, 333–337.Google Scholar
  5. Henriksen, T., Mahoney, E.M., and Steinberg, D. 1983, Enhanced macrophage degradation of biologically modified low density lipoprotein. Arteriosclerosis 3, 149–159.PubMedCrossRefGoogle Scholar
  6. Knott, T.J., Pease, R.J., Powell, L.M., Wallis, S.C., Rail, S.C., Jr., Innerarity, T.L., Blackhart, B., Taylor, W.H., Marcel, Y.L., Milne, R.W., Johnson, D., Fuller, M., Lusis, A.J., McCarthy, B.J., Mahley, R.W., Levy-Wilson, B., and Scott, J.L., 1986, Complete protein sequence and identification of structural domains of human apolipoprotein B, Nature (London) 323: 734.CrossRefGoogle Scholar
  7. Negri, S., Roma, P., Fogliatto, R., Uboldi, P., Marcovina, S., and Catapano, A.L., 1993, Immunoreactivity of apo B towards monoclonal antibodies that inhibit the LDL-receptor interaction: effects of LDL oxidation. Atherosclerosis 101, 37–41.PubMedCrossRefGoogle Scholar
  8. Pease, R.J., Milne, R.W., Jessup, W.K., Law, A., Provots, P., Fruchart, J.C., Dean, R.T., Marcel, Y.L., and Scott, J., 1990, Use of bacterial expression cloning to localize the epitopes for a series of monoclonal antibodies against apolipoprotein B100. J. Biol. Chem. 265: 553–568.PubMedGoogle Scholar
  9. Salmon, S., Goldstein, S., Pastier, D., Theron, L., Berthelier, M., Ayrault-Jarrier, M., Dubarry, M., Rebourcet, R., and Pau, B., 1984, Monoclonal antibodies to low density lipoprotein used for the study of low-and very-low-density lipoproteins, in “ELISA” and immunoprecipitation techniques. Biochim. Biophys. Res. Commun. 125: 704–711.Google Scholar
  10. Steinbrecher, U.P., Parthasarathy, S., Leake, D.S., Witztum, J.L., and Steinberg, S., 1984, Modification of low density lipoprotein by endothelial cells involves lipid peroxidation and degradation of low density lipoprotein phospholipids. Proc. Natl. Acad. Sci. USA 81: 3883–3887.Google Scholar
  11. Steinbrecher, U.P, Witztum, J.L., Parthasarathy, S., and Steinberg, D. (1987). Decrease in reactive amino groups diring oxidation or endothelial cell modification of LDL. Correlation with changes in receptor-mediated catabolism. Arteriosclerosis 7, 135–143.PubMedCrossRefGoogle Scholar
  12. Valentinova, N.V., Gu, Z.W., Yang, M., Yanushevskaya, E.V., Antonov, I.V., Guyton, J.R., Smith, C.V., Gotto, A.M. Jr., and Yang C.Y. (1994) Immunoreactivity of apolipoprotein B-100 in oxidatively modified low density lipoprotein. Biological. Chemistry Hoppe-Seyler in print.Google Scholar
  13. Yang, C.Y., Chen, S.-H., Gianturco, S.H., Bradley, W.A., Sparrow, J.T., Tanimura, M., Li, W.-H., Sparrow, D.A., DeLoof, H., Rosseneu, M., Lee, F.-S., Gu, Z.-W., Gotto, A.M., Jr., and Chan, L., 1986, Sequence, Structure, Receptor Binding Domains and Internal Repeats of Human Apolipoprotein B-100, Nature (London), 323: 734.CrossRefGoogle Scholar
  14. Yang, C.-Y, Gu, Z.-W., Weng, S.-A., Kim, T.W., Chen, S.-H., Pownall, H.J., Sharp, P.M., Liu, S.-W., W-H., Gotto, A.M., Jr., and Chan, L., 1989, Structure of apolipoprotein B-100 of human low density lipoproteins, Arteriosclerosis 9: 96.PubMedCrossRefGoogle Scholar
  15. Yang, C.-Y., Kim, T.W., Weng, S.-E., Lee, B., Yang, M., and Gotto, A.M., Jr., 1990, Isolation and characterization of sulfhydryl and disulfide peptides of human apolipoprotein B-100, Proc. Natl. Acad. Sci. U.S.A., 87: 5523.PubMedCrossRefGoogle Scholar
  16. Yang, C.-Y. and Pownall, H.J. Structure and function of apolipoprotein B. In Structure and Function of Plasma Apolipoproteins. (M. Rosseneu, Ed.), CRC Press, Inc. 63–84 (1992).Google Scholar
  17. Yang, C.Y., Gu, Z.W., Valentinova, N., Pownall, H.J., Lee, B., Yang, M., Xie, Y.H., Guyton, J.R., Vlasik, T.N., Fruchart, J.C., and Gotto, A.M., Jr. (1993). Human very-low-density lipoprotein structure: interaction of the C apolipoproteins with apolipoprotein B-100. J. Lipid Res. 34, 1311–1321.PubMedGoogle Scholar
  18. Yanushevskaya, E.V., Vlasik, T.N., Valentinova, N.V., Medvedeva, N.V., Fantappie, S., and Catapano, A.L. (1993). Monoclonal antibodies as a specific tool for studying apo B conformation. Abstracts for 62nd EAS Congress, Jerusalem, Israel, p. 68.Google Scholar
  19. Young, S.G., Witztum, J.L., Casal, D.C., Curtiss, L.K., and Bernstein, S. (1986a). Conservation of the low density lipoprotein receptor-binding domain of apoprotein B. Demonstration by a new monoclonal antibody, MB47. Arteriosclerosis 6, 178–188.PubMedCrossRefGoogle Scholar
  20. Zawadzki, Z., Milne, R.W., Marcel, Y.L. (1989). An immunochemical marker of low density lipoprotein oxidation. J. Lipid Res 30, 885–891.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Chao-Yuh Yang
    • 1
  • Natalia V. Valentinova
    • 1
  • Manlan Yang
    • 1
  • Zi-Wei Gu
    • 1
  • John R. Guyton
    • 1
  • Antonio M. GottoJr.
    • 1
  1. 1.Department of MedicineBaylor College of Medicine and The Methodist HospitalHoustonUSA

Personalised recommendations